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a b s t r a c t

Anewbiologically plausiblemodel of visual selective attention is developed based on synaptically coupled
Hodgkin–Huxley neurons. The model is designed according to a two-layer architecture of excitatory and
inhibitory connections which comprises two central neurons and a population of peripheral neurons.
Two types of inhibition from the central neurons are present: fixed inhibition which is responsible for
the formation of the attention focus, and short-term plastic inhibition which is responsible for the shift of
attention. The regimes of synchronous dynamics associatedwith the development of the attentional focus
are studied. In particular, the regime of partial synchronization between spiking activity of the central and
peripheral neurons is interpreted as object selection to the focus of attention. It is shown that peripheral
neurons with higher firing rates are selected preferentially by the attention system. The model correctly
reproduces some observations concerning the mechanisms of attentional control, such as the coherence
of spikes in the population of neurons included in the focus of attention, and the inhibition of neurons
outside the focus of attention. Sequential selection of stimuli simultaneously present in the visual scene
is demonstrated by the model in the frequency domain in both a formal example and a real image.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Selective visual attention is a mechanism that allows a living
organism to select the most important part of the incoming
visual information and ignore other parts of the visual stream.
This mechanism is necessary due to the limited processing
capacity of the nervous system which precludes the analysis of
all simultaneously presented stimuli whose significance for the
subject varies rapidly. Due to the attentional filter the important
stimuli can be processed more carefully and in more detail in a
short time.
Visual attention in human and monkey brains is realized by

a large-scale distributed neural network that includes several
cortical and subcortical areas with bottom–up and top–down flow
of information between them (Corbetta, 1998; Knight, 1997). The
question of the existence of a hierarchy in the attention system
is still unresolved. Some researchers assume that attention is a
distributed, self-organized system without any leading structure.
Other researchers believe that there is a special central structure
(the so-called central executive) that controls the functioning of
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the attention system and arguments in favour of this hypothesis
have been presented in Baddeley (1996, 2002) and Cowan (1988).
Recent studies have shown that the central executive may
be represented by a distributed network that includes lateral,
orbitofrontal, and medial prefrontal cortices linked with motor
control structures (Andres, 2003; Barbas, 2000). There is some
evidence that in addition to neocortical areas the hippocampus
may play an important role in implementing central executive
functions: the hippocampus has the uppermost position in the
pyramidal structure of convergent cortical zones (Damasio, 1989),
participates in controlling the processing of information in most
parts of the neocortex (Holscher, 2003), and coordinates the work
of the attention system (Herrmann & Knight, 2001; Vinogradova,
2001).
Despite intensive studies of neuronal activity related to

attention, it is still unclear what neuronal mechanisms are used
by the brain to implement attention. Electrode recordings and
functional brain imaging in animals and humans have revealed
two types of attentional modulation of neural activity in the
cortex. First, increased excitation of neurons representing attended
stimuli is observed while neural activity evoked by unattended
stimuli is reduced to a low level (McAdams & Maunsell, 1999;
Moran & Desimone, 1985). Second, gamma range oscillations
correlate with the activity of neurons in the attentional focus
(Doesburg, Roggeveen, Kitajo, & Ward, 2008; Tallon-Baudry,
Bertrand, Henaff, Isnard, & Fischer, 2005). The coherence of
spiking plays a major role in the control of attention (Fell,
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Fig. 1. The connection architecture of the attention model. PN1, PN2, PN3, . . .
are peripheral neurons encoding the features of external stimuli. CN1 and CN2
are central neurons which control the attention focus. Excitatory connections are
shown by arrows, inhibitory connections are shown by lines with black circles at
their ends.

Fernandez, Klaver, Elger, & Fries, 2003; Fries, Schroeder, Roelfsema,
Singer, & Engel, 2002; Singer, 1999; Steinmetz et al., 2000).1 The
latter evidence is considered to support the temporal correlation
hypothesis (Gray, 1999; von der Malsburg, 2001) i.e. increased
synchrony can reinforce the impact of spikes on subsequent
cortical areas. It is reasonable to expect that models of attention
should be able to reproduce these results using biologically
plausible neural networks.
The temporal correlation theory has been used as the basis

for several models of attention. Niebur and Koch (1994) have
presented a model for the experimental data of Moran and
Desimone (1985) recorded from the striate (V2) and extrastriate
(V4) areas of the neocortex. In this model visual attention is
interpreted as a local correlation of Poisson processes in V2. The
covariant activity increases the firing rate of a local population
of neurons and the coincidence detector in V4 suppresses the
activity of V4 cells associated with unattended stimuli. Corchs
and Deco (2001) developed a model of visual conjunction-feature
search (Chelazzi, Miller, Duncan, & Desimone, 1993; Treisman &
Gelade, 1980) where attentional bias wasmodulated by top–down
signals, from memory that coded target feature values, to feature
processing structures in the primary areas of the visual cortex.
An oscillatory model of attention comprising a layer of the

so-called peripheral oscillators interacting with a special central
oscillator has been developed in a series of papers (Borisyuk &
Kazanovich, 2004; Kazanovich & Borisyuk, 1994, 1999, 2003).
Advanced phase oscillators have been used as the elements of
this model. The state of such an oscillator is described by three
variables: phase, amplitude, and natural frequency of oscillations.
The functioning of the model has been based on the following
main principles: (1) partial synchronization between the central
oscillator and some subset of peripheral oscillators and (2)
resonant increase of the amplitude during partial synchronization.
The phase-locking mechanism used to synchronize oscillators
allows them to achieve similar frequencies and the focus of
attention is assumed to be formed by those peripheral oscillators
whose activity is partially synchronous with the activity of the
central oscillator.
The model we propose here aims to elucidate the problem of

how selective attention operates through the spiking dynamics of
neurons, in particular, how selective attention can be represented
by the synchrony and suppression of neural activity in a network
of interactive spiking elements. The model consists of a layer
of non-interacting neurons (peripheral neurons) and two central
neurons (CN1 and CN2) with global feedforward excitatory and

1 In Discussion we review the experimental evidence on attention and compare
it with the results of model simulations.
feedback inhibitory connections between peripheral neurons and
CN1, and global inhibitory connections from CN2 to peripheral
neurons (Fig. 1). Peripheral neurons code the features of objects
and are assumed to be located in the primary visual cortex.
Partial synchronization of a subgroup of peripheral neurons with
CN1 is interpreted as the formation of the attention focus. CN2
provides additional inhibition to peripheral neurons and switches
the attentional focus between objects.
The model uses biologically derived Hodgkin–Huxley neurons

as basic elements which are coupled according to an attention-
related architecture. The dynamical properties of such a network
as well as the performance of the model in solving selective
attention tasks have not been previously investigated. The model
allows us to characterise the formation of the focus of attention
in terms of the spiking activity of individual neurons and the
coherent spiking of neuronal assemblies instead of employing
coarse level modelling of oscillators representing the population
spiking rate. The advantage of this approach is that the model
provides information on the activity of single neurons and the
type of synchronization appearing between the neurons during
the attention state on a real time scale and under physiologically
plausible parameter values. Therefore it is possible to make a
better comparison between the simulated neural dynamics and
experimental recordings of spiking activity.
Although our previous experience has shown that an architec-

ture with a central element can be helpful for attention modelling,
we found that the transformation of this type of model into a net-
work of spiking neurons is a difficult task. The system includes
many parameters and it is not clear a priori how to define their
values to obtain desirable neural dynamics. We employ a mix-
ture of simulations and numerical bifurcation analysis to study the
regimes of synchronous dynamics associatedwith formation of the
attention focus. To find the correspondence between parameter
values and dynamical modes, we investigated a simplified system
formed by a central neuron and two peripheral neurons. Using bi-
furcation analysis, we found the boundaries in parameter space
which separate the regimes of global and partial synchronization.
This bifurcation analysis was found to be useful in providing initial
values for parameters which were further adjusted in simulations.
The study of the model revealed several dynamical regimes

associated with different aspects of the development of the at-
tentional focus including partial synchronization and transitional
forms of synchronous dynamics. The boundaries in parameter
space between regions with different dynamical behaviour have
been computed. It is shown that peripheral neurons with the high-
est firing rates are preferentially selected by the attention system.
We demonstrate the performance of the model by applying it to
a real image from a still camera that contains three objects with
different colours. It is shown that the model reproduces some ba-
sic experimental results concerning themechanisms of attentional
control (gamma range spiking activity, coherence of spikes in the
attention focus, suppression of the activity corresponding to unat-
tended stimuli, etc.). The results of these simulationsmay be useful
for the formulation of new hypotheses about the neural mecha-
nisms of attention that will be tested in future experiments.
The model description is provided in Section 2. We investigate

the dynamics of the model in Section 3. Simulation results are
presented in Section 4. Section 5 is devoted to the discussion of
the results and comparison with experimental data.

2. Model description

The two-layer architecture of the model connections is shown
in Fig. 1. Peripheral neurons (PNs) represent feature detectors in
the primary areas of the neocortex that are activated by external
stimuli. It is assumed that the external input to PNs is sufficiently
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large to cause their firing at some particular frequency. In the case
of visual attentionmodelling, the input is an image on a plane grid.
The PNs are located on another grid of the same size as the image,
with each PN receiving a signal from the pixel whose location on
the grid is identical to the location of the PN. In general, the PNs
should be bound by excitatory lateral connections but to facilitate
the analysis of themodel dynamics these connections are currently
not considered. The only connections that are present in themodel
are the connections between the PNs and the central unit.
The central unit is an extremely simplified version of the central

executive. It consists of two neurons, CN1 and CN2. CN1 enables
attention to be focused on a selected subset of PNs. CN2 controls
the shift of attention fromone stimulus to another. This allows CN1
to consecutively synchronize its firing with different assemblies
of PNs. Both CN1 and CN2 send inhibitory signals to all PNs, but
excitatory input signals from PNs are received by CN1 only. In
this study, we assume that the connection strengths between CN1
and all PNs are constant and universal. There are no connections
between CN1 and CN2.
The strength of inhibition from CN1 is fixed but inhibitory

signals from CN2 vary over time. We suppose that there is a short-
term plasticity in the strength of the connection from CN2 to each
PN. If both neurons have high activity for a prolonged time, the
inhibitory synapse will be strengthened, while if either one of
them has low activity the synaptic strength will decay (Fitzpatrick,
Akopian, & Walsh, 2001; Zucker & Regehr, 2002). The PNs that
are currently selected by CN1 may be suppressed by CN2. This
provides CN1 with an opportunity to change the focus of attention
by synchronizing its activity with another assembly of PNs. The
introduction of an inhibitory influence fromCN2 to PNs reflects the
experimental evidence that attention is biased against returning to
previously attended stimuli (Klein, 1988; Takeda & Yagi, 2000).
The Hodgkin–Huxley model (Hodgkin & Huxley, 1952) is

employed for each neuron. It is described by the following
equations:

dV
dt
= −Iion + Iext − Isyn, (2.1)

dX
dt
= AX (V )(1− X)− BX (V )X, X ∈ {m, h, n}, (2.2)

where V is the membrane potential of the neuron, m, h, n are the
gating variables of the ionic channels, and Iion denotes the ionic
current which is given by

Iion = gNam3h(V − VNa)+ gKn4(V − VK )+ gL(V − VL), (2.3)

where gNa, gK , gL are the maximum conductances for the
sodium, potassium and leak currents, respectively, VNa, VK , VL
are the corresponding reversal potentials. All details of the
model including description of variables and specifications of all
parameter values can be found in Appendix A.
External stimulation of a PN is represented by the current

Iext(t) = Ĩext(1+ 0.01ξ(t)), (2.4)

where Ĩext is a constant and ξ(t) is a random process without
time correlation and the random variables ξ(t) are identically and
uniformly distributed in [−1, 1]. The current Ĩext is suprathreshold
and induces an intrinsic firing rate for each PN. We assume that
different features of a stimulus are coded by different values of Ĩext ,
hence PNs utilize frequency coding. For example, in the case of a
visual stimulus the value of Ĩext may be determined by the colour
of the pixel.
The random process ξ(t) can be considered as an additive noise

in the system. The purpose of adding a small noise is to break
the symmetry and introduce heterogeneity in order to guarantee
that the final state of the network will be a global attractor. Also,
some parameter values of each PN have been randomised (see
Appendix A). However, the dynamics of the model are robust and
have not been influenced.
It is not necessary for CN1 to receive an external current to

generate action potentials. If the excitatory inputs from PNs to CN1
are strong enough, they will force CN1 to fire. If CN1 already has an
intrinsic firing rate, then the excitatory inputwill increase its firing
rate even further. In contrast, CN2 requires an external current,
otherwise it would be silent. In our simulations, the standard
external input Iext to CN1 is 5 mA and that to CN2 is 30 mA.
The interaction of the neurons is expressed by the synaptic

current Isyn. In our model, CN1 receives excitatory synaptic inputs
from all PNs, while CN2 does not receive any synaptic input from
other units (it receives an ‘‘external’’ current that could represent
areaswithin the brain that are not directly involved in the attention
mechanism). PNs receive inhibitory inputs fromboth CN1 and CN2.
The equations are described below.

2.1. Excitatory connections from PNs to CN1

The excitatory synaptic current Isyn received by CN1 from PNs is

Isyn = w1(V − Vsyn,exc)
N∑
j=1

Mj∑
k=1

αexc(t − Tj,k). (2.5)

Here V is the potential of CN1, w1 denotes the connection
strength from a PN to CN1, which is constant and universal for
all PNs, Vsyn,exc is the synaptic reversal potential for excitatory
connections (in simulations Vsyn,exc = 0 mV), and αexc(t)
represents the synaptic conductance: αexc(t) = at exp(−bt) for
t ≥ 0 and zero for t < 0 is the alpha-function of excitatory
coupling with parameters a and b controlling the shape of the
alpha-function (in our simulations a = 2 ms−1, b = 0.1 ms−1),
Tj,k is the time of the kth spike generated by the jth PN. The first
summation refers to all spike times of the jth PN (Mj is the total
number of spikes generated by the jth PN). The second summation
refers to synaptic inputs from all neurons (N is the total number of
PNs).

2.2. Inhibitory connections from CN1 and CN2 to PN

We suppose that the ith peripheral neuron receives inhibitory
synaptic currents from the central units CN1 and CN2:

Isyn,i = w2(Vi − Vsyn,inh)
M2∑
k=1

αinh(t − Tk)

+w3,i(t)(Vi − Vsyn,inh)
M3∑
k=1

αinh(t − Sk), i = 1, 2 . . . ,N. (2.6)

Here Vi(t) is the potential of the ith PN, w2 is the connection
strength (maximal synaptic conductance) fromCN1 to PN,which is
constant and universal for all PNs,M2 is the total number of spikes
of CN1,M3 is the total number of spikes of CN2, Tk is the time of the
kth spike generated byCN1, Sk is the timeof the kth spike generated
by CN2, and Vsyn,inh is the synaptic reversal potential of inhibitory
coupling (in simulations Vsyn,inh = −80 mV for all PNs). The alpha-
function αinh(t) represents inhibitory synaptic conductance and
has the same form as αexc(t) with the parameters a = 0.6 ms−1,
b = 0.03 ms−1.
In Eq. (2.6), w3,i(t) is the modifiable GABAergic connection

strength from CN2 to the ith PN, representing the short-term
plasticity:

w3,i(t) =
{
w̃3, TH,i ≤ t ≤ TH,i +∆h
0, otherwise, (2.7)

where w̃3 is the saturation value of plasticity, TH,i marks the onset
time of plasticity, and ∆h represents the duration of plasticity
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(a fixed parameter). The decay of the connection strength can
be motivated by a limited store of releasable neurotransmitters
such that the synapse will be disabled after prolonged activation
(Brager, Capogna, & Thompson, 2002). The plasticity can also
decay due to homeostasis, anti-Hebbian property, or other decay
mechanisms. Here we assume thatw3,i(t) drops back to zero after
decay, that is, after the time∆h has expired.
Let TR,i be the timeof the previous reset of the plastic connection

from CN2 to the ith PN, i.e. the time when w3(t) last decayed to
zero. The onset time of plasticity TH,i > TR,i is determined as the
first time moment that satisfies the following equation:∫ TH,i

TR,i
Θ(Vi(t)− υ) ·Θ(VCN2(t)− υ)dt =

1
ε
, (2.8)

where υ is the threshold value for detecting spike generation, ε is
a parameter (0 < ε < 1), and

Θ(x) =
{
1, x > 0
0, x ≤ 0. (2.9)

The value on the left-hand side of Eq. (2.8) measures how often
the spikes of the ith PN and CN2 coincide in time. As soon as this
value reaches the threshold 1/ε, the connection strength jumps up
to the saturation level w3,i(t) = w̃3. The period of saturation lasts
for∆hms. After that time the connection strengthw3,i(t) drops to
zero and the process of connectionmodification starts a new cycle.
Such modification process can be considered as an approximation
of Hebbian learning. The simplification is in postulation of abrupt
jumps (up and down) of the connection strength instead of
gradual increase and decrease. More explanations on how this
approximation has been obtained are presented in Appendix B.
During the simulation, all equations are numerically integrated

using the fourth-order Runge–Kutta method.

3. Synchronous dynamics

According to our assumption, the focus of attention is formed
by those PNs which spike synchronously with CN1. Therefore it is
important to investigate the dynamical regimes of the model. We
distinguish five types of dynamics: global synchronization, partial
synchronization, transitional state, quiescence, and asynchronous
state. The following examples illustrate the conditions under
which these types of dynamics can appear. The neuron CN2 is not
essential for attention focusing because the role of this neuron is to
switch attention between objects in the visual scene. In this section
we consider simulations without attention switching.
Intensive study of dynamical regimes and synchronization was

undertaken in application to the model containing CN1 and 200
PNs. The PNswere arranged into two groupswith one grouphaving
a stronger external input and consequently a higher frequency of
spike generation. To illustrate the results of our study, we limit the
number of PNs to 10. The model with this reduced number of PNs
exhibits the same qualitative behaviour as in the case of 200 PNs.
Let us distribute 10 PNs between two groups A and B with 5

PNs in each group. The mean values of external currents for the
groups A and B are I1 and I2, respectively (I1 > I2). The neuron
CN1 receives an external current of 5 mA; this is lower than both
I1 and I2.
If all connections are neglected (w1 = w2 = w3 = 0), all PNs

would fire independently at different frequencies (determined by
the values of external currents). This state of independent spiking
is called the asynchronous state. Note that CN1 would not fire
(unlike PNs) because it receives a subthreshold external current.
In the regimeof global synchronization (Fig. 2), all PNs generate

spikes coherently with CN1 in the ratio 1:1. Notice that CN1 is now
firing due to the excitatory inputs from PNs. This regime is stable
if the inhibitory influence of CN1 on PNs is not too strong.
Fig. 2. Global synchronization. The panels show the potential traces of different
neurons. Input current to CN1 is 5 mA, I1 = 25 mA, I2 = 27 mA. Connection
strengths arew1 = 0.1, w2 = 0.5, w3 = 0.

Fig. 3. Partial synchronization. The panels show the potential traces of different
neurons. Input current to CN1 is 5 mA, I1 = 25 mA, I2 = 11 mA. Connection
strengths arew1 = 0.1, w2 = 0.5, w3 = 0.

In the regime of partial synchronization the neurons of one
group generate spikes coherently with CN1 while the neurons of
the other group do not generate spikes. Fig. 3 shows the situation
when the neurons of group A are in partial synchronization
with CN1. For neurons of group B, the fluctuations of the
membrane potential are synchronized with the spikes of CN1,
but the amplitude of these fluctuations is too small to generate
a spike. The regime of partial synchronization appears if the
inhibitory influence of CN1 on PNs is strong enough. We interpret
this situation as the concentration of attention on a stimulus
represented by the neurons of group A. Thus, the regime of partial
synchronization is used to represent selective attention.
The quiescence regime appears if the inhibitory influence of

CN1 on PNs is strong (especially when the external current to CN1
is suprathreshold). In this mode all spiking activity of neurons
in both groups A and B is suppressed, however, the membrane
potentials oscillate synchronously with the spikes of CN1.
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Fig. 4. Transitional state. The panels show the potential traces of different neurons.
Input current to CN1 is 5 mA, I1 = 25 mA, I2 = 22 mA. Connection strengths are
w1 = 0.1, w2 = 0.5, w3 = 0.

Our simulations show that the transition from global to
partial synchronization and then to the quiescent state caused
by parameter variation does not happen as a sudden jump but
passes through the so-called transitional state. In this regime the
peripheral neurons are neither fully synchronized with CN1 nor
quiet. Fig. 4 presents an example of spiking activity during the
transitional state. In this example, the neurons in group A fire
coherently with CN1, but the spikes of the neurons in group B are
phase-locked with CN1 in ratio 1:2 (one spike is regularly missing
as shown by the smaller, subthreshold peaks). It should be noted
that the firing of neurons in group B might be incoherent. For
example, in Fig. 4 neurons PN7 and PN9 fire in anti-phase with
other members of group B. In general, the behaviour of a single
neuron in group B can be characterised in the following way: the
neuron sometimes produces a spike almost coherentlywith a spike
of CN1 and sometimes skips a spike. For example, a PN can generate
3 spikes synchronously with CN1 but then skips a spike. Also,
many other spiking patterns of synchronous and missing spikes
have been observed. Different spiking patterns may coexist in the
transitional state. For example, spiking patterns with the ratio 2:1
(two spikes of CN1 and 1 spike of the neurons in group B) and with
the ratio 3:2 coexist for some parameter values.We interpret these
multiple patterns of spiking in the transitional state as different
degrees of attention concentration.
The variety of dynamical regimes is not limited by periodic and

quasi-periodicmodes. Irregular chaotic activity is also possible. For
example, using parameters ĨCN1 = 9.8 mA, I1 = 25 mA, I2 =
11 mA, w1 = 0.002, w2 = 0.071, w3 = 0, the system
demonstrates chaotic behaviour. To confirm this fact, we calcu-
lated the Lyapunov exponent, which was found to be 0.01.
Fig. 5 shows a diagram (similar to the bifurcation diagram)

representing the boundaries between different dynamical regimes
in the 2D space of parameters I1 and I2 which define the intrinsic
frequencies of PNs in groups A and B, respectively. The input to CN1
is suprathreshold. If both currents are large enough, the regime
of global synchronization takes place. If both currents are small
enough, all PNs are in the quiescent regime. The boundaries shown
in Fig. 5 have been determined by multiple simulations of the
system.
The diagram shows that if both groups A and B have high

intrinsic frequencies (both I1 and I2 are large) the whole system
is in the global synchronization state. Decreasing either I1 or
Fig. 5. Dynamical profile of the system with two groups of PNs. The axes show
I1 and I2 which determine the intrinsic frequencies of groups A and B, respectively.
The dynamical behaviours are labelled as: global synchronization, transitional state,
partial synchronization and quiescence. Input current to CN1 is 9.8 mA. Connection
strengths arew1 = 0.002, w2 = 0.4, w3 = 0.

I2 transfers neural dynamics to the transitional state which
is characterised by diversity of periodic spiking patterns. For
example, one can see a pattern with a skipped spike in group B
among 10 consequent spikes of CN1, or a skipped spike among nine
spikes of CN1, etc. Also, there is a subregion of the transitional state
with irregular chaotic dynamics.
Let us fix the value of the parameter I1 = 35 and gradually

decrease the value of the parameter I2 starting from I2 = 35. The
following sequence of transformations of dynamical behaviour can
be observed: (1) global synchronization between CN1 and all PNs
with 1:1 spike ratio (24 < I2 < 35); (2) variety of spiking patterns
both periodic and irregular, CN1 is in 1:1 spike ratio with group A
and some spikes of neurons in group B are skipped (14 < I2 < 24);
(3) partial synchronizationwith neurons of group A (0 < I2 < 14).
The diagram in Fig. 5 has been obtained by numerical study

of the system. A more rigorous approach based on bifurcation
analysis and accurate calculation of limit cycles and their stability
has also been used. The parameter region corresponding to
the transitional state is not narrow and contains limit cycles
(both stable and unstable) of different shapes corresponding
to different spiking patterns. The transition from global to
partial synchronization involves a number of bifurcations of limit
cycles. Suppose that the limit cycle with 1:1 spiking pattern
corresponds to the regime of partial synchronization and other
multiple limit cycles correspond to partial synchronization with
different patterns of missing spikes (e.g. each second spike is
missing, or each third spike is missing, etc). We used MATCONT
software (freely available from http://www.matcont.ugent.be) for
continuation of the limit cyclewithin parametric space and studied
the limit cycle bifurcations in the transitional state between
global and partial synchronization. This investigation shows a very
complex structure of multiple bifurcations of limit cycles near
the boundaries of the transitional zone. The typical bifurcation is
the fold bifurcation of the limit cycle (stable and unstable limit
cycles merge and disappear). In the usual scenario, the limit cycle
corresponding to partial synchronization with some particular
pattern of missing spikes is stable and undergoes only slight
changes until a critical value of parameters is reached where
branches of stable and unstable limit cycles merge and both limit
cycles disappear. In spite of intensive study of bifurcations of limit
cycles in the transitional state, there remain many uncertainties
about the complete bifurcation structure of the model, therefore
further investigations are required.

http://www.matcont.ugent.be
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An important result of these simulations is that selective
attention (associated with partial synchronization) always favours
a group with higher frequency. If group A has a higher intrinsic
frequency (I1 > I2) then group A will be engaged in the regime
of partial synchronization (and vice versa). This is also true if the
number of groups is higher than two. In neurophysiology, higher
salience of a stimulus is usually revealed in a higher level of neural
activity representing this stimulus in the cortex. Therefore the
model complies with the fact that themost salient stimulus should
have the priority in being selected in the focus of attention.

4. Selective attention

In this section we demonstrate how the model performs se-
quential selection of objects in the focus of attention. Two exam-
ples are considered. In the first example we deal with a population
of spiking PNs with uniformly distributed frequencies. We demon-
strate that the model automatically selects the subgroup contain-
ing the fastest neurons and includes them into the attention focus.
In terms of neural dynamics thismeans that the PNs in the selected
subgroup generate spikes synchronously with CN1 in the gamma
range, while other PNs do not fire. Due to the Hebbian type learn-
ing rule, the strength of inhibitory connections from CN2 to the se-
lected subgroup gradually increases. As a result, spike generation
in the selected subgroup is stopped. This developed inhibition lasts
for some time preventing the neurons from the inclusion in the fo-
cus of attention. In the mean time the focus of attention moves to
the second fastest subgroup of PNs, etc. The neurons of the previ-
ously selected subgroup will again be eligible for inclusion in the
focus of attention after some interval which depends on the rate
of decay of the synaptic inhibition from CN2. The second example
illustrates the system performance in the case of a real visual scene
with three objects recorded by a still camera.

4.1. Example 1

Let us consider a model with 80 PNs with input currents
distributed in the interval [10, 50] mA. The external inputs to CN1
and CN2 are 5mA and 30mA, respectively. Fig. 6 demonstrates the
distribution of the intrinsic frequencies: the spiking rastergram of
PNs is shown for the case of disabled connections from the central
neurons. The PNs marked by lower numbers have shorter firing
periods (higher intrinsic frequencies) therefore they have a better
chance for earlier inclusion in the attention focus.
Fig. 7 presents the rastergram of PNs in the case when all

connections with the central neurons are restored. It shows
that the population of PNs is split into five subgroups that are
consecutively synchronized by CN1. The process starts from the
group with the highest intrinsic frequency (neurons from PN1 to
PN16). During the time interval 0–120 ms this group operates in
the regime of partial synchronization with CN1. During the next
time interval from 120 to 240 ms another group is included in
the regime of partial synchronization with CN1, etc. The selection
of a group in the regime of partial synchronization and the
corresponding shift of attention are controlled by CN2 through
the short-term plasticity between CN2 and PNs. The parameters
of plasticity are chosen in such a way that after a PN generates five
spikes the inhibitory connection from CN2 to this PN is activated
which results in the activity of the PN being shut down. The
plasticity decays after 650 ms so that the selection cycle can be
continuously repeated.
Although there are no direct connections between PNs, they

are automatically split into five groups. Since the original input
currents vary gradually among the PNs, the grouping somehow
represents the resolution of the signal and this resolution depends
on the system parameters and can be adjusted. In Section 3, we
have shown that the boundary between two regimes of partial
synchronization of different groups is not a line but a region with
intrinsic frequencies of neurons belonging to the transitional state.
Fig. 6. Rastergram (spikes of neurons versus time) of 80 disconnected PNs (the
vertical axis represents the number of the peripheral neuron). Each black dot
represents a single spike of a neuron. Input to CN1 = 5 mA, input to CN2 = 30 mA,
inputs to PNs vary to provide different intrinsic frequencies. Connection strengths
arew1 = w2 = w3 = 0.

Fig. 7. Rastergram (spikes of neurons versus time) corresponding to sequential
selection (the vertical axis represents the number of the peripheral neuron). Each
black dot represents a single spike of a neuron. Inputs to CN1 and CN2 and external
current inputs to PNs are the same as in Fig. 6. Connection strengths are w1 =
0.1, w2 = 9, w3 = 5. Other parameters are υ = −10 mV, ∆h = 650 m s,
ε = 0.16/ms.

This explains an interesting behaviour of some neurons which are
selected in both of the two adjacent subgroups. An example of such
a neuron can be found in Fig. 7: the neuron PN73 is selected in both
of the subgroups 4 and 5.
Fig. 7 also shows that partial synchronization occurs in the

gamma range of around 35 Hz. The first selected subgroup
(PN1–PN16) oscillates at around 40 Hz which is higher than the
last selected subgroup (PN74–PN80) oscillating at around 30 Hz.

4.2. Example 2

To demonstrate model performance in the case of a real visual
scene, we use a still camera image that contains three objects:
an orange, a pear, and a blue cloth. The objects are placed on an
almost white background. A grid of 320× 240 PNs was used in the
simulation, providing a one-to-one correspondence between the
PNs and the pixels of the imagewhich is also of the size 320× 240.
We suppose that different colours are encoded as different intrinsic
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Fig. 8. Sequential selection of objects in a real image (the original AVI movie can be found at http://www.pion.ac.uk/binmam/). PNs have one-to-one correspondence with
image pixels. The fawn area indicates the location of active PNs. The colour values of image pixels are converted to external current values of PNs. Input to CN1 = 5 mA.
Input to CN2 = 30 mA. Connection strengths arew1 = 0.1, w2 = 9, w3 = 5. Other parameters are υ = −10 mV,∆h = 650 m s, ε = 0.16/ms.
frequencies of PNs. We linearly converted the RGB values of pixels
into the values of the external current Ĩext in the range 10–40 mA.
The results of these simulations are presented in Fig. 8. The

firing frequencies are in the gamma range (around 40 Hz). An
overlay is used on top of the image to mark the currently attended
area: if a PN fires then the corresponding pixel is coloured in fawn.
During the time interval 0–20ms there is a transitory period when
no selection of objects occurs. At t = 20ms, the cloth is selected. At
this moment the system is in the regime of partial synchronization
between CN1 and the PNs located in the cloth area. Other PNs
are all suppressed. The selection of the cloth continues until the
moment t = 170 ms when the orange is selected. Then at t =
320ms the pear is selected. After that the focus of attention returns
back to the cloth, etc.
The formation of the attentional focus is controlled by CN1. At

any moment one assembly of PNs has higher frequency than the
other two assemblies and this assembly of neurons is selected first.
The shift of attention to another object is controlled by CN2 which
increases its inhibitory influence on the firing PNs and keeps this
inhibition for some time. During this period inhibited PNs cannot
generate spikes but they return back to the normal spiking regime
after the inhibitory period has expired.

5. Discussion

We developed and studied a new model of selective visual
attention based on two-layer architecture, consisting of a layer
of non-interacting neurons with global feedforward excitatory
and feedback inhibitory connections to two central neurons. This
model consists of spiking neurons of Hodgkin–Huxley type with
meaningful neurobiological parameters. The advantage of this new
model is that the direct comparison with experimental recordings
of spiking activity is allowed.
We have shown that an inhibitory neuron connected to

an assembly of spiking neurons is able to synchronize their
activities. The type of synchronization depends on the connection
strengths and the distribution of intrinsic spiking frequencies.
Analysis of the model revealed five regimes of synchronous
dynamics that can be associated with the attention focus:
global synchronization, partial synchronization, transitional state,
quiescence, and asynchronous state. The bifurcation diagram and
the boundaries in the parametric space between the regions of
different dynamical modes have been calculated. It has been
shown that peripheral neurons with the highest firing rates are
preferentially selected by the attention system.
The model can sequentially select separate objects simultane-

ously presented in the visual scene. To testmodel performance, we
used a formal example and a real image from a still camera that
contained three colour objects on awhite background. Simulations
confirmed that there is a reliable shift of attention from one object
to another due to a properly tuned mechanism of Hebbian-type
learning that allows the system to avoid focusing attention repeat-
edly on the previously selected object.
The robustness of the model has been carefully checked. The

values of some parameters (e.g. maximum conductance of each
channel) have been randomised and the random addition for
each PN has been chosen in the range ±2%. We found that such
parameter perturbation does not destroy the dynamical behaviour
of the model. Also, the uniform noise of the order of 1% of
the external current has been added to the right-hand side of
the equation describing the dynamics of the potential. For each
moment of time the random addition is uniformly distributed in
the range±1%of the value of the external current. Itwas found that
this level of the noise does not change the dynamics of the model.
Note that we have used an extremely strict definition for partial
synchronization. The suppressed group should fire no spikes at all
while the spikes of the selected group should be coherent and in
one-to-one correspondence with the spikes of the central neuron.
In the real attention system, one can expect a more stochastic
type of synchrony reflected in the correlation of spike flows. Under
these milder conditions, introduction of a rather large noise in the
model will have no significant effect on the selection performance
as long as the mean external inputs for different objects have large
enough difference.

http://www.pion.ac.uk/binmam/
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5.1. Comparison with other attention models

Katayama, Yano, and Horiguchi (2004) suggested a selective
attentionmodel based on a two-layer network of Hodgkin–Huxley
neurons. Their main results partly coincide with ours: (a)
synchronous firing of neurons in the second layer with a subset of
neurons in the first layer, (b) rapid shift of attention fromoneobject
to another. However, due to the lack of inhibitory connections in
theirmodel, object selection is not an automatic dynamical process
but is implemented by manually setting the proper values of input
currents.
Tiesinga (2005) published a model based on Hodgkin–Huxley

type neurons which reproduced experimental results about the
response of V4 neuronswhen attention shifts between two stimuli.
In our model, however, we concentrate on the higher level
implementation of selective attention and a possiblemechanismof
interaction between the higher and lower cortical areas. Note also
that in contrast to Tiesinga’s model our model can operate with
more than two competing objects.
An architecturewith an inhibitory central unit has been used by

Wang and Terman (1995, 1997) in the network LEGION. The main
function of LEGION is image segmentation with the consecutive
selection of objects, but in the paper (Wang, 1999) a modification
of LEGION oriented towards attention modelling was presented.
LEGION is designed as a network of Van der Pol oscillators,
therefore it is difficult to compare its temporal characteristics (such
as the working frequency, the speed of attention focusing, etc.)
with experimental data. The consecutive selection of objects is
represented by activity in different phases within one oscillation
cycle, but in our model the duration of selection is independent
of the firing frequency of individual neurons. Also in LEGION, if a
single object is included in the focus of attention, the capability
of selecting another object will disappear. Finally, in LEGION the
largest objects are selected preferentially while in our model the
object coded by the highest frequency is selected first. This coding
is more flexible and in better agreement with the idea of saliency.

5.2. Comparison of modelling results with experimental data on
neuronal mechanism of attention

Let us summarise the most important new findings of our
attention model and compare them with what is known from
experimental evidence. We first formulate a feature of the model
and then present the experimental finding in support of it.
A. The working frequency of synchronization associated with
attention belongs to the gamma range.
The same frequency range was observed in many experi-

ments on attention. Fries, Reynolds, Rorie, and Deimone (2001)
recorded multi-unit activity and local field potentials in the ex-
trastriate area V4 when a monkey switched attention between vi-
sual stimuli and distractors. It was found that neurons activated by
the attended stimulus showed increased gamma-frequency syn-
chronization (35–90 Hz) compared with neurons at nearby sites
activated by distractors. In similar experiments (Taylor, Man-
don, Freiwald, & Kreiter, 2005) attention significantly increased
oscillatory currents underlying the recorded field potentials in
the gamma range and increased the level of synchronicity of V4
neurons representing the attended stimulus. It is interesting that
misdirection of attention to a distractor was preceded by a cor-
responding shift of oscillatory activity from the neuronal popu-
lation representing the target to the population representing the
distractor. Vidal, Chaumon, O’Regant, and Tallon-Baudry (2006)
recorded magnetoencephalogram signals while manipulating the
focusing of attention and found that attention focusing is accom-
panied by low-band gamma oscillations (44–66 Hz) at parietal
locations. Their conclusion is that focused attention relies on
gamma-band oscillatory synchrony.
B. In the model, a group of PNs with higher spiking activity has a
higher chance of being included in the attention focus.
Experiments show that salient visual stimuli that have the ad-

vantage in attracting attention elicit higher activity of neurons
(Allman, Miezin, & McGuinness, 1985; Morris, Friston, & Dolan,
1997; Sillito, Grieve, Jones, Cudeiro, & Davis, 1995). Increased
saliency (e.g. higher contrast or greater dissimilarity with sur-
rounding objects) results in increased neural activity. It is believed
that this content-based modulation of neural activity is caused by
long-range horizontal connections in early visual cortex.
C. In the model, synchronization is fast enough in comparison to
real times of attention focusing.
Experiments on attention speed show great diversity in the

latencies of attention focusing and switching. Typical times are
between 50–300 ms depending on the complexity of the task
(Carlson, Hogendoom, & Ferstraten, 2006; Egeth & Yantis, 1997).
In our simulations, the establishment of partial synchronization
starting from some random initial conditions takes about 30 ms,
which is fast enough to reserve some time for further information
processing in the focus of attention.
D. During partial synchronization the activity of neurons repre-
senting unattended stimuli is suppressed.
Physiological studies show that inhibition of the activity of

neurons representing unattended stimuli is one of the main
mechanisms through which irrelevant information is filtered out
(McAdams &Maunsell, 1999;Moran &Desimone, 1985; Vanduffel,
Tootell, & Orban, 2000). The model allows different degrees of
inhibition from complete suppression of firing in ‘‘unattended’’
neurons to partially suppressed activity when ‘‘unattended’’
neurons fire more rarely than ‘‘attended’’ neurons. Bifurcation
analysis shows that the range of parameters supporting the latter
dynamics is large enough.

5.3. Neural mechanisms of synchronization in attention modelling

Experimental evidence indicates that attention focusing is re-
lated to coherent oscillatory spiking activity in the gamma range.
An important question is: what is the neuronal mechanism un-
derlying synchronization? In the paper (Niebur, Hsiao, & Johnson,
2002), two potentially plausible neurobiological mechanisms are
discussed thatmight induce synchrony in a population of neurons:
(a) lateral coupling between neurons in the population and (b) a
common input to all neurons in the population (e.g. synchrony can
be induced by a top–down action potential sent simultaneously
to all neurons of the population). The authors note that descend-
ing feedback projections existing inmany sensory systems provide
possible hardware for this mechanism. Our modellingmay be con-
sidered as an argument in favour of the second hypothesis that
synchronization is implemented through top–down signals com-
ing from an inhibitory central unit that in its turn is stimulated by
bottom–up excitatory signals.
We wish to remark upon the following feature of our attention

model. The working regime of the system can be characterised
as functioning near the ‘‘critical state’’. The idea that critical
regimes and metastable states are important for brain functioning
was the subject of many publications (see for example Kryukov,
Borisyuk, Borisyuk, Kirillov, and Kovalenko (1990), recent progress
was reported in Borisyuk and Cooke (2007)). In our simulations
we have chosen the parameters of a single Hodgkin–Huxley
neuron and strengths of their connections in such a way that
the system dynamics is close to an Andronov–Hopf bifurcation
where both oscillations and steady-state modes exist. This critical
regime allowed us to efficiently control the dynamics of individual
neurons and of the whole network, switching it between different
types of synchronous/asynchronous states as well as between
different groups of partial synchronizations.
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Appendix A

Below the full description of the model is given, therefore some
formulas from the main text will be repeated.
We use the Hodgkin–Huxley model for each neuron. Suppose

there are N peripheral neurons and 2 central neurons, then we
have a total of N + 2 neurons. They are described by the following
equations:

dVi
dt
= −Iion,i + Iext,i − Isyn,i, (A.1)

dXi
dt
= AX (Vi)(1− Xi)− BX (Vi)Xi, Xi ∈ {mi, hi, ni}, (A.2)

Am(Vi) = (2.5− 0.1(Vi − Vrest))/(exp(2.5− 0.1(Vi − Vrest))− 1),
(A.3)

Ah(Vi) = 0.07 exp(−(Vi − Vrest)/20), (A.4)
An(Vi) = (0.1− 0.01(Vi − Vrest))/(exp(1− 0.1(Vi − Vrest))− 1),

(A.5)
Bm(Vi) = 4 exp(−(Vi − Vrest)/18), (A.6)

Bh(Vi) = 1/(exp(3− 0.1(Vi − Vrest))+ 1), (A.7)

Bn(Vi) = 0.125 exp(−(Vi − Vrest)/80), (A.8)

where i = 1, 2, . . . ,N is used to index PNs, i = N + 1
indexes CN1, and i = N + 2 indexes CN2. The meaning of
variables and the values of parameters are: Vi(t) is the membrane
potential of a neuron,mi(t) is the activation variable of the sodium
conductance channel, hi(t) is the inactivation variable of the
sodium conductance channel, ni(t) is the activation variable of the
potassium conductance channel, Iion,i(t) is the total ionic current,
Iext,i(t) is the external current to the neuron, Isyn,i(t) is the synaptic
current received by the neuron, Vrest is the resting potential of the
neuron (equal to−65 mV).
Notice that the membrane capacitance is equal to 1, therefore

it is not shown in Eq. (A.1).
The sum of ionic currents of the ith neuron is,

Iion,i = gNam3i hi(Vi − VNa)+ gKn
4
i (Vi − VK )+ gL(Vi − VL), (A.9)

where i = 1, 2, . . . ,N + 2. The meaning and the values of
parameters are: VNa is the reversal potential for the sodium current
(equal to 50 mV), VK is the reversal potential for the potassium
current (equal to−77 mV), VL is the reversal potential for the leak
current (equal to−54.4 mV), gNa is the maximum conductance for
the sodium current (gNa = 120(1+0.02η)mS/cm2, η is uniformly
distributed in [−1, 1]), gK is the maximum conductance for the
potassium current (gK = 36(1 + 0.02η) mS/cm2, η is uniformly
distributed in [−1, 1]), gL is themaximum conductance for the leak
current (gL = 0.3(1 + 0.02η) mS/cm2, η is uniformly distributed
in [−1, 1]).
The following formulas define the external currents incoming to
the peripheral neurons (PNs) and central neurons (CN1 and CN2)
respectively:

Iext, i(t) = Ĩext,i(1+ 0.01ξi(t)), i = 1, 2, . . . ,N, (A.10)

Iext, N+1 = ĨCN1, (A.11)

Iext, N+2 = ĨCN2, (A.12)

The meaning of variables and the values of parameters are:
Ĩext, i (i = 1, 2, . . . ,N) are constants. In our simulations of
selective attention, these values are determined by the colour
value of the image pixel represented by the PN, ξ(t) is a random
process without time correlation and the random variables ξ(t)
are identically and uniformly distributed in [−1,1], ĨCN1 is the
external current delivered to CN1 (equal to 5 mA unless otherwise
specified), ĨCN2 is the external current delivered to CN2 (equal to
30 mA).
The synaptic currents received by the central neurons are

described by the following equations,

Isyn,N+1 = w1(VN+1 − Vsyn, exc)
N∑
j=1

Mj∑
k=1

αexc(t − Tj,k), (A.13)

Isyn, N+2 = 0, (A.14)

whereN is the total number of PNs,Mj is the total number of spikes
of the jth PN, Tj,k is the time of the kth spike generated by the jth
PN, αexc(t) = at exp(−bt) for t ≥ 0 and zero for t < 0 is the
alpha-function of excitatory couplingwith parameters a = 2ms−1
and b = 0.1ms−1 providing a physiologically realistic shape of the
alpha-function, Vsyn,exc = 0mV is the synaptic reversal potential of
excitatory coupling, w1 = 0.1 (unless otherwise specified) is the
connection strength of the synaptic current delivered from a PN to
CN1.
The synaptic currents received by peripheral neurons are

described by the following equations,

Isyn,i = w2(V − Vsyn,inh)
M2∑
k=1

αinh(t − Tk)+ w3,i(t)(V − Vsyn,inh)

×

M3∑
k=1

αinh(t − Sk), i = 1, 2 . . . ,N. (A.15)

HereM2 is the total number of spikes of CN1,M3 is the total number
of spikes of CN2, Tk is the time of the kth spike generated by
CN1, Sk is the time of the kth spike generated by CN2, αinh(t) =
at exp(−bt) for t ≥ 0 and zero for t < 0 is the alpha-function
of inhibitory coupling with parameters a = 0.6 ms−1 and b =
0.03 ms−1 providing a physiologically realistic shape of the alpha-
function, Vsyn,inh = −80 mV is the synaptic reversal potential
of inhibitory coupling, w2 = 9 (unless otherwise specified) is
the connection strength of coupling from CN1 to a PN, w3,i(t) is
the modifiable connection strength of synaptic coupling from CN2
to the ith PN with saturation value w̃3 = 5 (unless otherwise
specified):

w3,i(t) =
{
w̃3, TH,i ≤ t ≤ TH,i +∆h
0, otherwise, (A.16)∫ TH,i

TR,i
Θ(Vi(t)− υ) ·Θ(VN+2(t)− υ) dt =

1
ε
, (A.17)

Θ(x) =
{
1, x > 0
0, x ≤ 0, (A.18)

where TH,i is the onset time when the plastic synaptic connection
from CN2 to the ith PN becomes saturated, TR,i is the time of the
previous reset of the plastic connection from CN2 to the ith PN,
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Fig. 9. The strength of coupling w versus time for the inhibitory connection from
CN2 to PN. The dotted curve shows a sigmoidal increase of the connection strength
induced by the coincidence of spikes from both neurons computed according to
Eq. (B.1). In this equation parameters have the following values: q1 = q2 = 0.01,
c = 0.225, Iext = 30 mA for CN2 and Iext = 20 mA for PN. The solid line shows the
approximated step function which was employed in our simulations according to
Eqs. (2.7) and (2.8).

i.e. the time whenw3(t) last decayed to zero,∆h = 650 m s is the
duration of short-term plasticity, υ = −10 mV is the threshold
value for synaptic plasticity, ε = 0.16 ms−1 is the learning rate.

Appendix B

The rule (2.8) for the modification of the GABAergic connection
strength has been derived from the standardHebbian type learning
rule (Gerstner & Kistler, 2002). Letw(t) be the coupling strength of
the connection fromCN2 to a PN. In a traditional form the dynamics
of the connection strength can be written in the following way:

dw
dt
= f (w) (1+ tanh(q 1(VPN(t)− υ)))

× (1+ tanh(q2 (VCN2(t)− υ))). (B.1)

Here VPN is the potential of PN, VCN2 is the potential of CN2.
Learning is established when both neurons (CN2 and the PN)
simultaneously generate action potentials (VPN > υ and VCN2 > υ ,
where υ is the threshold. The function for learning control f (w) =
c(w−w2) provides saturation at the levelw = 1. The parameter c
is the rate of learning. To compare the dynamics of the connection
strength modification, we simulated a model comprising the
Hodgkin–Huxley equations for CN2 and PN togetherwith Eqs. (2.8)
and (B.1). The parameters in simulations were υ = −10 mV, ε =
0.16/ms, c = 0.225, q1 = q2 = 0.01, Iext = 30 mA for CN2
and Iext = 20 mA for PN. The results presented in Fig. 9 show
that our modification procedure is a step-wise approximation of
the Hebbian learning rule.
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