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Mean-field theory of an electron solvated in molten salts
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A mean-field, microscopic theory of an excess electron solvated in a molten salt is presented.
Starting with the grand partition function of the system, we reformulate the problem to evaluate a
mean field induced by charges and calculate self-consistently the electron density distribution. We
obtain a Poisson—Boltzmann equation for the mean-field and Siclyer equation for the electron
wave functions with a potential dependent on the mean field and a local density of melt. We also
derive expressions for electron—ion correlation functions. We demonstrate that the mean field is
weak in molten salts and can be analytically evaluated in the DebyekeHlimit. Using a simple
variational treatment, we calculate energetic and structural properties of a solvated electron for a
wide range of alkali halide melts. These properties are mainly determined by the polaron effect,
while the repulsion between the electron and ion cores leads to a remarkable variance of the
properties. The results obtained are in good agreement with path-integral simulations and
experimental data on the maximum of the absorption spectrum of an electron solvated in these
melts. © 2000 American Institute of Physid$$0021-9606)0)51107-4

I. INTRODUCTION mining the electron density distribution and the mean field,
and correlate them with the RISM-polaron treatment using
The behavior of a solvated electron in various media hagtegral RISM-like equations. We show that for the systems
been the focus of attention for the last few decddé®Re-  under consideration the Debye screening is strong and the
cent progress in computing technique and numerical simulamean field is weak, which enables us to evaluate the mean
tions based on path-integral methods has stimulated interefield in the Debye—Hckel limit. We apply the method to
in the problem. Polaron and semicontinuum mod@sa  calculate equilibrium energetic and structural properties of
solvated electron allow to treat the solvated electron behavthe solvated electron for a wide group of alkali halide melts.
ior with regard to the effects of cavity formation and polaron Of special interest is the evaluation of the absorption spec-
tails. Modern RISM-polaron(reference interaction site trum of a solvated electron, since there are a lot of data on
mode)®’ and mean-field® theories are a good tool to calcu- this spectrum in the molten saf%;2” Using a simple varia-
late equilibrium properties of an electron solvated intional treatment we consider the influence of the Coulomb
nonpolaf*®~*?and dipolar hard-sphere solverts, molten  attraction and short-range repulsion between the electron and
salts}* and watet>*® with regard to the microscopic struc- ions on the behavior of the solvated electron.
ture of solvent and electron—solvent interactions. The models  The paper is organized as follows. In Sec. Il we describe
require extensive numerical computations. the model, considering the grand partition function of the
Special attention is given to an electron solvated in mol-system. In Sec. Il using a path-integral field treatment, we
ten salts and metal-molten—salt solutiohs! Structural  reduce the problem to the evaluation of a mean field induced
and thermodynamic properties of molten salts are thoroughlyy charges, which is determined by a Poisson—Boltzmann
studied numerically and experimentaffyDramatic concur-  equation, and self-consistent calculations of electron wave
rence of long-range Coulomb attraction and short-range refunctions determined by a Schiinger equation. Section IV
pulsion effects are revealed there. Occurrence of strikingleals with an analytical evaluation of the mean field, ob-
phenomena such as nonmetal-metal transitions, bipolaragined in the Debye—Hikel limit. Numerical results and dis-
formatiort®?in the systems sends researchers to investigateussions are presented in Sec. V, where we use the data
them time and again. obtained to calculate the maximum of the absorption spec-
In this paper, we develop a statistical theory of an elecirum of an electron solvated in various alkali halide molten
tron solvated in molten salt, starting with the grand partitionsalts. There, we also compare the results obtained with the
function for the coupled electron—Coulomb-liquid system. available numerical and experimental data. Appendixes A
Using path integral field formalism, we reformulate the and B include several of mathematical steps omitted from the
problem to evaluate a mean-field induced by charges anghain text.
calculate self-consistently the electron density distribution
for the ground and first excited states of an excess electron.
As a result, we derive nonlinear differential equations deter!l- STATEMENT OF THE PROBLEM

Let us consider an excess electron in a molten salt. lons
¥Electronic mail: gena@impb.psn.ru interacting with the electron are a source of a potential. The
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detailed study of the potential field is very difficult. But we an evaluation of the grand partition function for a symmetric
can treat this field as a disordered one, use a self-averagirgectrolyte in an external field. Then we should calculate
procedure, and calculate electron characteristics via thermaelf-consistently the electron density distribution which in-
dynamic and structural parameters of the molten salt. duces the external field.

We start the statistical treatment of an electron dissolved
in a molten salt, considering the grand partition function of
the systenE. We use the system of units for whigh=m !l MEAN-FIELD APPROXIMATION
=e=1. For simplicity, we suppose that chemical potentials

g > In view of the above treatment, we reformulate, us-
of ions (u,,u_) as well as their masseM(, ,M_) are

_ =) ing the standard field-theoretic appro&efi® As a result, the
equal, i.e.,pu =p_=p and M. =M_=M, while ion  qanq partition function can be written as the path integral

charges are equal tal, considering the molten salt as a gyer the electric field? induced by chargetsee Appendix
symmetric 1-1 electrolyte. Then, the grand partition functiony

= can be written as the functional integral depending on the
ion configurationR™™ and the electronic path(7)

E=Eof D[r(T)]fD[‘P]eXF[—BQ{‘I’,f(T)}],

)

_ (2 M)*S/Z 3/2V ex ) N

== E [(2m ,BN| pBu)] f D[r(7)] Ual (5)
N=0 ' Q=Te+(V—ug)* — *(W—Ug)— BTA(F,r (7).
X f dR™N exd — QJ, Here Q) is the thermodynamic potential of the system,is

the kinetic energy of the electron, the long-range component
of the external field induced by the electron is

Q=

. (@

i N
EUES u:(r(r)—Rig}

B
BU” + Jo dT 1 5
. . . . . ue(R—r)=2 J’ [Uq(R_r(T))—Ue+(R—I’(T))]d7,
where U;;(R™N}) denotes the ion—ion interaction potential, BJo

u-(r—R;.) is the electron—ion potentiay] is the volume of 5,4 uq‘1=%7rA(r) is the operator inverse to the Coulomb
the system is the inverse temperatur;, (or Ri—) is the jnteractionu,(r). The symbol " denotes the convolution
coordinate ofith positive (or negative ion. integration:y* x= [ x(R)y(R—R;)dR; .

To reveal the effects of short- and long-range forces, we  The |ast term in Eq(5) reflects the changes in the dis-
decompose the ion—ion potential into the Coulomb pargipytion of ions, caused by the electric fiele(R). It can be
ug(R)=R™* and the short-range componebi(R) as a  itten in terms of the average ion densjtyand the total
hard-sphere potential correlation functiorhg(r) of hard sphere¢see Appendix A

as

Uii(R{N}):Us(R{N})"_%; TUy(Ri+—Rj=). 2 2

" AW, (1) = pr it 5 e her oo, ®)
The signs in Eqgs(1) and (2) depend on the signs of inter- :
acting charges. wheref, is the generalized Mayer function of the electron in

To describe electron—ion interaction, we use a simplahe mean field
local pseudopotential. For the interaction between the elec-
tron and a negative ion, the pseudopotential(r) includes fo(R,F(7))= E ( exd SY(R)]+ ex;{ ~-BY(R)
the Coulomb partiy(r) and the hard-sphere repulsion com- 2
ponentu.(r<d_), the latter takes into account the excluded

B
volume effect _f Uedr(7))dr
0

ue—(r)zuq(r)+ues(r)- ©) .
) _ Thus, we should evaluate path integrals over electron
On the other hand, the electron—cation potential(r) be-  nathr(7) and over a classical field# (R). Below, we will

ing purely Coulomb attraction at large distances can be modsnoyy that the path integral over the electric field includes a

eled by the constant,, (r<d)=u.. (d), where the cut-off |546 parameteBa>1 (Wherea* characterizes the aver-

distanced is an adjustable parameter aged electron radiiisTherefore, the saddle point method can
Ue+ (r=d)=—Uqg(r), Ue;(r<d)=ue.(d). (4)  be used to calculate the path integral over the electric field.

A similar form of the electron—cation pseudopotential areThe saddle point determines the mean-figlR) as

commonly used in computer simulatiotfs:8-2128 k1)
To find the grand partition functio&, we should calcu- o

late the complicated multidimensional integrals in Eg),

and then evaluate the series oixerVarious statistical meth-  We will derive the explicit expression foF in Sec. IV, and

ods can be used for this purpose. In principle, we can conealculate it analytically, using various relations between the

sider a molten salt with an excess electron as an ensemble pfean-field and electron—ion correlation functions.

classical ions in an external field. The source of the field is  The integral over electron path can be estimated by a

an excess electron. Therefore, the problem can be reducedtigal actionSy. Using Jensen’s inequality, we find

—2). (7)

=0. ®

v=v
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—0, s(k)—1]. The first and the second terms of Hd4)
EBJ D[r(7)]exd —Solexp((Sy—BQ)s) correspond to the short- and long-range components of the
effective potentiaV;.
=exf — BQes], C) We can also define electron—ion correlation functions

Oe_(r) andge. (r), determining the probability for anion or
cation to occur at distanaefrom the center of electron lo-
calization

where symb0I$So—,BQ>50 denote averaging with the use of
trial action Sy

<SO_BQ>SOEf DIr(N1(So—pL)exd —S]. (10 ge+(r):%:(1+phs*fq)equgﬁf], (15)

Equation (9) determines the effective thermodynamic 5Q B
potential Q.. If the trial actionS, depends on a parameter ge_(r)= —Ef=(1+phs*fq)exp[—ﬁ‘lf—,8<ues)].
a, the upper bound of estimat®) can be found by searching &{Ue-) 16
the extremum of the effective thermodynamic potentilak (16
with respect toa. The latter yields a set of nonlinear alge- Using these functions, we express the effective potential as:
braic equations relating the parameteiand parameters of _
Q. This method of electron path integral was used in Ver=p(Ues*Ges +Ue-*ge-)/2. 9
RISM-polaron theory for the quadratic trial actibh.An- ~ Thus, the problem of an excess electron in a molten salt is
other way for estimating Eq9) is its variational treatment reduced to computation of mean fieNr, and to self-
by the electron density matrig(r,r’) related to the Green’s consistent evaluation of the ground electron funciiytr),
function G(r,r')=3,¢:(r") ¢i(r)exp(= BW)332 (whereW,  depending on the parameters of molten salt via the electron—
and ¢, is the total energy and wave function idh electron ion correlation functions.
statg. These variational estimates lead to a Sdiwmger To calculate the mean field, we rewrite E&) as the
equation forg,;(r), and allow to find the states of an excessPoisson—Boltzmann equation
electron which does not form chemical bonds. o=

We assume that the ground electron state is not degen- Ua * (¥ =(Ue)) =per(r)=p(ge+ —ge-)/2, (18)
erate and dominant, i.e|Wo—W;|>1, and restrict our- \where p,((r) is the effective density of charges. The latter
selves to only the consideration of the ground wave functiortan be transformed into the integral equation
¢o(r) of the electron(the evaluation of the first excitation ~
will be obtained below Then, the averaging --)s, changes W=(Ue)~ pertUq, (19

into averaging over the electron density distributigf(r).  which is similar to the Ornstein—Zernike equation. It relates

As a result of this procedure the potentials depending on thghe mean field and the electron—ion correlation functions de-
electron path change to averaged potentiake Appendix pending on this field via Eq$15) and(16). Relation(19) is

B), i.€., Ues— (Ueg =Uegt b5, Ue—(Ue)=Uc* &3, i.€., nonlinear and can be calculated only numerically, but we can
Ut find an analytical solution to Eq19) in the Debye—Huokel
Qer=Te+ (¥ —(Up))* g (W —(Ug)) limit when the mean field is small.
-1 s
—B A (Ueg). (1) v, EVALUATION OF THE MEAN FIELD IN THE
Then, the upper bound of E@9) can be obtained by the DEBYE-HUCKEL LIMIT
extremum We symmetrize the generalized Mayer functibp by
0 o the shiftW =W +(ue¢)/2 and expand the thermodynamic po-
9o =0. (120 tential Q. taking into account only the terms whose order is

) _ o _ lower than the second one with respecﬁ{o As a result, we
The extremum results in the nonlinear Salinger equation  grrive at the expression for the thermodynamic potential

A . ugt .
— 5 T Verr {¢o}) ~Wo| $o=0, (13 Qer=Tet+ (W —(e))* g (W —(0g))
where Vg(r,{¢o}) is the self-consistent effective potential p R .
for an excess electron in liquid ~B5(1+phstfeg W (1+fed W+ 0, (20)
Vef(r,{¢0})=s*(qf—<ue>)+ues*p(1+phs*fq) where we also use the shifted external fild,)=(ue

+Ue42), while Q4 andf.s are the relevant quantities arising

xexg —B(W+(Ueg) 112, (14 from short-range electron—ion repulsion

here we introduce the switching functies= uq’l* U, deter- p
mining the influence of cation core. For our choiceuqf; Qg=—pB Y fest 5 fesths* fes,
the Fourier transform of the switching functiongék) = (1

+sinkd)/kd)/2, whered is the cut-off distancgwhen d fes=exg — B(Uee/2]—1. (21)
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We introduce the quantitiesz(k)W(k)=[(1+phetfey  tional estimates of Eq25) using simple trial wave functions
Xexr:[—ﬂ(uegl2+ikr]\if(r)dr, 3(r) =0 u;l and the in- for the ground and first excited electron states.

verse Debye radiug = (47pB)Y2 Then we find the formal " Ulsmtg a S|mpledtr|:;1l tvvave fungtlozbotﬁr):%l(a:.) forf "
explicit expression for the Fourier transform of the mean € electron ground state, we reduce the evaluation ot the

field grand partition function to the search for the extremum
Q)
b A0 G5 =
T (22

This extremum for the simplified thermodynamic potential
Note that when the excess electron is considered to be @5) yields the nonlinear algebraic equation fer

point charge, i.e.3(k)=¢?(k)=z(k)=1 the mean field 3

takes the Debye—Hikel form: W (r)=exgd—ar]/r. Since a=C1[1+f(ad)]+Ci’Z 1+ 77 1iciom|, (26
the thermodynamic potenti@20) is quadratic with respect to Ba 3

the mean field, the path integral over fieltlcan be analyti- whereC;, C,, andCj are constants depending on the type
cally evaluated, resulting in the final expression for the ef-of the wave function chosen, whilg «d) is a function de-

fective thermodynamic potential termining the influence of cut-off distanak and o is the
Az ) 4 hard-sphere diameter of ions. To evaluate analytically the
0. —T.4+0 _if s9(k)e“z(k) po(k)dk 23 excluded volume we use the steplike approximation for

ef Tel s o k?+ &?z(k) hy(r): hy(r<o)=—1, h(r=0)=0, andf.(r): fedr<re)

=—1 andf.(r=rg)=0.
The explicit expressions foge.. are easily obtained if we For theeliwowneself-consistent effective electron—solvent
consider the zero- and the first- order terms over the meagotential we can calculate the first excited electron state in
field in Egs. (15 and (16) and use expressio(22). As @  the potential. Using a simple trial wave function for the first
result, we find the Fourier transform of the effective gycited electron stateb,(a,r) depending on parameter, ,

electron—solvent potentiaVc¢(k) including the repulsive \ye ais0 reduce the problem to the search for the extremum
short-range Y) and attractive long-rangev/() components

P(k=’2(k) g3k) 4 Mer_
0 a P — Y,
Vef(k) :V| +VS: - k2+ azz(k) . F + E aal (27)
R Q a,a)=T.+V * 2.
X[(l_s)que++ue£e—]- (24) ef( l) e ef({d’o}) d)l
] ] Thus for simple variational estimates we can find the
As is seen V4 (k—0)=Vy=const, while V,(k—0)

extremum ofQ.(«) and then the extremum &, 1),
dand using these data calculate energetic and structural char-

electron state by a sinale parameterelated to the mean acteristics of an excess electron in various molten salts.
Y Jgep To complete the mean-field study we will correlate our

electron [aQiuse=(r2)l’2~ a . Note that the expansion in ¢ 15 with those obtained within the RISM-polaron
series of¥’ is corzrect wherﬁ‘lf<;1. For our est|maté?2) W€ theory’ based on the solution to the corresponding integral
have BV (0)~ ¢“(0)/p+---<a”/p which is small in view  equations. For this purpose we consider the quantities

of our assumption that the solvated electron does not form

chemical bonds. Point out that in the systems under consid- Cex=~fes™ B(1HfedUe, (28)

erationr~3 A while ®~7.5A"", i.e., re@>1 and the ef-  which play the role of the electron—ion direct correlation
fective thermodynamic potentidR3) represents the zero- fynctions. Then again taking into account only the terms

and the first-order terms of the expansion in series 0(/vhose order is lower than the second one with respeﬁt to

(reze) = Our numerical calculations show that the consid and evaluating analytically the quadratic path integral over

eration of the second order term in E@?') changes the the electric field, we result in the effective electron functional
results by less than 1%, therefore, for estimates we can use

the simplified thermodynamic potential

=—4x/k>.
For qualitative estimates we will characterize the groun

p
BQ=pT+ E*(Ce++ce—)

1

Qef=Te+QS—;féz(k)(pé(k)dk, (25) 28 (B
+7f drf d7’U(r(7")—r(7)), (29

where we separate different effects of electron—ion interac- 0 0
tions. The second term in ERS) results from the excluded whereU(r)=2;C¢* xi;* C¢;j is the influence functional po-
volume effect similar to thé=-center formation, while the tential and y;;(r—r') is the density—density correlation
third term is determined by the Coulomb interaction modi-function of the electrolyte, which is related to the total cor-
fied by cation—core effect. Thus our problem is reduced taelation functionh;; of the symmetric electrolytey;;(r)
evaluation of Eq(25) which can be transformed to the cal- =p5(l’)+p2hij(l’). This effective electron functional is the
culation of a Schrdinger equation with the corresponding starting point of the RISM-polaron treatmérit. The
self-consistent potential. In this paper we will obtain varia-electron—ion correlation functions derived by us can also be
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transformed into the integral form. Taking into account thaty = ay=const andQ.¢=— Cay/2, the latter results in the
the Fourier transformﬁg(k) is related to the average inter- |arge parameteBay>1 of the saddle point approximation

polymer correlation functiom(k),*?i.e., (8). As is seen from the relations, the electron energy and the
B electron mean radius are independent of the parameters of
qﬁg(k):w(k):[g"lf o(k,7)dT, (30 molten salt. The correlation functiam., (r) obtained in the
0

polaron limif* at small distances g.,(r—0)=1
and considering only the zero- and first-order terms, we ar+ ¢5(r)p ! is close to that found by the RISM-polaron

rive at theory!* The ratio between the relevant electron energies
found by path-integral simulatiotsis also close to that
Oei=1+he=1+, w* Cei* Xij /p- (31  given by Eq.(35) and only slightly changes as the cut-off
j radiusd varies.
Various closures can be used to complete(86). Our treat- Therefore, we conclude that the Coulomb interactions

ment corresponds to the mean spherical approximation fgesulting in the self-consistent polaronlike state make the
which Co.(r>r.)=—pu. and ge.(r<ry)=0. Another main contribution to the behavior of an electron solvated in

widely used closure is based on the hypernetted chain aF;noIten salt. But the polaron treatment yields rather a simpli-

proximation(HNC) for which fied picture of the behavior of the solvated electron. In par-
R ticular, the polaron limit does not allow one to consider
Jer=exg £BV]. (320  short-range repulsion effects or the effects of finite size of

ions. The polaron model cannot explain the variance of en-
ergetic and structural properties of the solvated electron as
the ion size changes.

Substituting expressio(®2) for ¥ in this equation and tak-
ing into account that

2°z(k) A ) To investigate the behavior of the solvated electron with
Pef(k)=—ms(k)¢o(k) the account of the excluded volume and cation core
effects by variational estimates for the extrema of
~p> h;j(K)Cei(K) p5(K), 39 Qer@) Qefa,a1), we use various types of the wave func-

I

tions for the ground and the first excited electron states. The

we result in the closure best estimate is obtained for the hydrogenlike functions

3
geizexr{—ﬁ<uei>+<2 Cei*phin’ (34) ¢O(r)=\/:—w(1+ar)exq—ar), (37)

which is derived in Ref. 15 by the optimized perturbation

theory. 5
.Thus we see three ways to calculate structural and ener-  (r)= \/Zr oSO exp(— ayr), (38)
getic properties of the solvated electron, namely, to obtain ™

variational estimates by solving nonlinear algebraic equa-

tions [Egs. (26) and (27)], to calculate the coupled Schro wherer and ® are the absolute value and the angle of the
dinger and the Poisson—Boltzmann differential equationgadius-vector, respectively. Note that in the polaron limit the
[Egs. (13) and (18)], and to solve linear integral equation difference between the electron energies obtained by the ex-
[Eg. (31)] with various closures together with variational act solution to the Schdinger equation and that found by
treatment of the effective electron function@). The first  variational estimate using Eq®7) and(38) is less than 1%.
way is the simplest one and does not require extensive com-  First, we examine the influence of cation core, ignoring
putations, we will use it to study the behavior of an excesshe hard-sphere repulsion of negative ion, ilg=0. Ini-

electron in alkali halide melts. tially we determine the cut-off distance from the experimen-
tal data on the first ionization potentials for alkali metals,
V. RESULTS AND DISCUSSIONS namely, L{5.39 eV}, Na5.14 e\}, CH3.89 eV}, K(4,339

eV), Rb(4,176 eV} by searching the extremum with the hy-
drogenlike potential, using the trial wave function in the
éorm (37). The resultant values are listed in Table |, they are
slightly different from that found by local pseudopotential

The case when the short-range componentsof and
Ue_ are ignored(polaron limip is studied in Ref. 34. There
the electron behavior is described by the polaron effectiv

f ional
unctiona method®
1 The extrema yield the nonlinear equations doand «
-1 _ 4 1
Qer=Te Wf bo(K)dk. (39 which we present here in the explicit form by expanding in

. - S series ofad
Note that in the polaron limit the electron kinetigd), po- “«

tential (I1), and totalW, energies satisfy the virial theorem
| Tel:|Wol|:|TT|=1:3:4. (36)

Expressing the polaron functional via the parametewe
find Qqrca?— Ca. The extremum of the functional yields —3.810 *(ad)0+---, (39

«=0.49972-8.129 10 %(d)?+ 1.466 10 %(ad)*
—3.01:10 3(ad)®+7.9-10 4(ad)®
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TABLE |. Salt parameterftemperaturdl, mean ion diametes (Ref. 37, densityp (Ref. 36, cut-off radiusd]
and calculated total energies and mean radii of the ground and first excited electron states in various molten
akali halides.

TK  o@®) p02A™%) dA) A A -Weev) W (eV)

LiF 1210 1.74 8.15 1.58 2.29 4.53 3.91 2.41
LiCl 953 2.19 4.15 1.58 2.56 4.68 3.78 2.33

LiBr 889 2.24 3.39 1.58 2.63 4.72 3.73 2.31

Lil 801 2.47 2.71 1.58 2.71 4.78 3.69 2.29

NaF 1370 1.97 5.37 1.69 2.40 4.64 3.78 2.35
NaCl 1160 2.43 3.07 1.69 2.61 4.77 3.68 2.29
NaBr 1100 2.55 2.62 1.69 2.67 4.80 3.65 2.28
Nal 1007 2.61 2.12 1.69 2.75 4.85 3.60 2.25
KF 1220 2.30 3.80 2.16 2.63 4.98 3.40 2.20
KCI 1126 2.69 2.37 2.16 2.80 5.07 3.35 2.16
KBr 1087 2.86 2.08 2.16 2.85 5.10 3.33 2.15
Kl 1030 3.05 1.72 2.16 2.93 5.14 3.30 2.13
RbF 1150 2.38 3.20 2.28 2.82 5.12 3.31 2.15
RbCI 1075 2.80 2.15 2.28 2.87 5.16 3.26 2.12
RbBr 1042 2.98 191 2.28 2.92 5.19 3.25 211
Rbl 994 3.09 1.60 2.28 2.99 5.23 3.22 2.10
CsF 1054 2.62 2.77 251 2.85 5.27 3.16 2.08
CsCl 991 2.99 1.90 251 2.99 5.33 3.11 2.05
CsBr 981 3.15 1.68 2.51 3.03 5.35 3.10 2.05
Csl 971 3.28 1.39 2.51 3.09 5.39 3.08 2.03

14a(m+1)— (20m°+ 106m*+ 392m*+ 196m?+ 56m-+ 7) estimate yields.~=3.4 A, while the path integral and RISM-
polaron calculations result in a smaller vaiyg=3.2 A.1#

+2(ad)2(10m°+45m*) — 11/9 ad)*(2m® We use the differencd W=|W,—W,| to estimate the
+16m5—7m?) + 2/35 ad)8(me+ 8m’ + 58m° maximum of the absorption spectruffig. 3). It is evident

that it decreases as the cut-off radius rises. In Fig. 3 we also
—54m°) - 2,8 10" *(ad)®(m®+8m’ — 32m° present the experimental data on the maximum of the absorp-

tion spectrurf®2’ and the results corresponding to the po-
laron limit. We see that our estimates accounting only the
+280m°+ 368m+424m’ + 144m°®— 18m°) +- - cut-off distance effect correctly describe the changes in the
_ maximum of the absorption spectrum but underestimate the
=0, (40 absolute value for K- and Na-ions.
wherem= a4 /a. The computation of these equations differs The consideration of short-range componap{(r) re-
from the solution to the exact transcendent equations only bgults in the formation of a vacancy of the type fofcenter.
several percents at<2.3A. We calculate the structural and energetic properties of the
Figure 1 plots the results of the calculations: the depensolvated electron in alkali halide melts by searching the ex-
dencies of the total and potential energies for the groundremum for thermodynamic potential®5) and(27). The ex-
(Wq,Pg) and first excited ,,P;) electron states on the cluded volume effect results in a stronger localization of the
cut-off radiusd. Figure 2 depicts the mean radii for the first solvated electron leading to a decrease in the electron mean
(r,) and the groundr() electron states versus the cut-off radiusr. by 15%—-20%. Table | lists the data on the electron
distanced. They increase as the distance rises. For KCI, outotal energies for the ground and the first excited states. The

—4m°)—1,1- 10 3(ad)*%5m*?+ 40m*t+ 140m*°

0 d{A)

—w, FIG. 1. Dependencies of the total and the potential en-
—_—, ergies for the ground W,,P,) and first excited

R (W;,P,) electron states on the cut-off radids
cieeeee Py
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&) 3 —r FIG. 2. The mean radii of the groundg) and the first
— excited ,) electron states versus the cut-off distance

d.

d(R)

00 o5 10 15 20 25

corresponding mean radii for alkali—halide melts are alsaect estimates of structural and energetic characteristics of an
presented in the table. The data on temperature-dependestcess electron in alkali halide melts. We have found that the
densities of the melts were taken from Ref. 36. For ion radiiproperties of the solvated electron are mainly determined by
we use data obtained by Abranet al®” The change in the the polaron effect, while the short-range effects such as the
used ion radii by 10% changes the found data by less thaR-center formation and the cation—core effect leads to a re-
1%. We have examined the temperature dependence of tmearkable variance of the equilibrium electron characteristics.
absorption maximum, taking into account only the tempera-  Although we have considered a simplified case, i.e., a
ture dependence of salt density. It provides the correct shifsymmetric 1-1 electrolyte, our treatment can be extended to
of wmax Versus temperature, but yields the results qualitathe dipolar liquids, ion—dipole mixtures and metal-molten—
tively different from available experimental data. We believesalt solutions. A similar treatment was also used to study an
that the use of more accurate data on the structural propertiedectron solvated in a disordered mediimand liquid
of salt, i.e.,hy(r) can offset this disadvantage. helium3? Therefore, the above treatment is rather general

Figure 4 plots the comparison of the calculated maxi-and can be applied to a wide range of problems dealing with
mum of the absorption spectrum by our theory and withinan excess quantum particle in spatially disordered media.
the RISM-polaron treatmenf;”® and available experimental The main criterion of the theory is that the numtérof
dgta?5‘27 As is seen, our estimate is in a good agreemengnvironmental particles interacting with the excess electron
with the experlmental data. The variational estimates angyo large, i.e.,Nxpa 3>1. Otherwise we should use
experimental data differ by 10%—15% for Na- and Cs I0NS.4yantum-chemical methods.
The difference between the theory and the experiment may
result from insufficient consideration of the cation core ef-
fect.

Thus, starting with the exact grand partition function of
the system we have derived nonlinear deferential equationsPPENDIX A: PATH-INTEGRAL TREATMENT OF THE
determining the mean-field and the electron density distribuGRAND PARTITION FUNCTION
tion. Using the simple variational treatment we have exam-
ined the behavior of the solvated electron in molten salts. We ~ We introduce the generalized charge dengifyr) and
conclude that our simple variational treatment provides corthe generalized ion densitigs.(r), respectively

AW (e¥)

FIG. 3. DifferenceAW vs the cut-off radiugl, the sym-
bols correspond to the experimental data on the maxi-
mum of the absorption spectrutRef. 25—-27, while

the horizontal line—to the polaron limit.

08 } t t t t d(ﬁ)
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FIG. 4. The calculatedcircles and the experimental
data(Refs. 25-27¥ (triangles on the maximum of the
absorption spectrum in molten salts, solid lines present
the spline approximation of the data, large circles cor-
respond to the data obtained by the RISM-polaron

100 1 theory (Refs. 19 and 20
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2
o(A)
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N/2
1
po(N=2 £81—R), po(r)=p.(D)+p_(1). (W Ues Ug) =1+ fiepl 4 oy fge pi™e gt
, !
(AL) 1 o
n
Then the exponent indeR in the grand partition functio® + qu* ps *-fq. (A6)
is given by

Taking into account thapM=p and p@=p2+ p2hy(r)

(wherehyg is the total correlation function for hard spheres
and ignoring irreducible correlations whose order is higher
than the second one, we arrive at

u
Q=g Te+ue*pq+ues*p—+pq*?q*pq+us , (A2)

here we use the notatiddes=B‘lfgues(r(r))dr. For the

Coulomb potentialiy(r), we can use the Fourier transform - K]
of an exponent with a quadratic index l(\P’UeS*Us):l”Lgl (fg*p)"/k!
-1
exp[%l)q* uq*pq]: f D[\If]exp[—%\lf*uql*‘l']] < 1 2 “
+k22 o7 farp?herfq kl. (A7)
XJ D[V ]exd — 3 W= ual*\lf Transforming it in the exponent and substituting into Eq.

(A4) we result in Eq.(5).
+pgr ¥, (A3)

whereu;l(r) is the operator inverse ta,. Then, Eq.(A2) APPENDIX B: ESTIMATES OF THE ELECTRON PATH
INTEGRAL BY THE GROUND WAVE FUNCTION

becomes
B First, we consider the term in E¢5) which is a linear
== Eof D[\p]ex;{ —BTe= 5 (¥ —Ug)* ug M (¥ —ug) functional — gW*uy **u,. Denoting the part-g¥+ug*
independent of an electron path @s, we have for averag-
X1(¥,Ugs,Uy), ing
(Ad) 1
I (\P’UQS,US) <eXF{Ce* ue]>50: 1+ Ce* Uet E(Ce* Ue)2+ B >
o0 NN ' So
=2 | dRVSEIT ex B+ W (Ri.) ~U(RM) — 14 Corugr o,
—UdRi1)]. 1
dRi-)] + 51 (Cerug) 0% (CerUg)

Let us introduce n-particle correlation functions
(n)
ps’(rq,...ry) of hard spheres 1
) ’ + 37 (Ce Ue)* @3 (Ce* Ue)* (Ce Ue)

Pyt =E

=\

(N—n)! o (B1)
where we use, which are then-order density matrices of
xf exf — BUJdRIN"M, (A5)  the electron subsystem.
Relation(10) means that all the- order density matrices
Then, the configurational par{V,U.,U) is given by are expressed via the first-order electron density madrix
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XQ(y,y)Q(Z,Z). etc. Using this property and bearing in A. Kornyshev, and J. UlstrufElsevier, Amsterdam, 1988

mind that the electron ground state is dominant, ugs,o
~Uug* p2=(u,) we have

(exf Ce* Ugl)s, =1+ Ce* (Ue) + %(Ce*(ue))2+~--

=exd Ce*(Ue)]. (B2

Similar relations also take place for the bilinear term in Eq.uup
(5), only the first nontrivial term in the series expansion hasizk.

the second order

-8B .
eXp ——Ug* Ug ~* Ug
So

=1+<_—ﬂue*u;1*ue+--~>

2! S,

=1+2—f3<ue*u;1*ue>**ez+«~

. (B3)
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