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Mean-field theory of an electron solvated in molten salts
G. N. Chueva) and V. V. Sychyov
Department of Quantum-Mechanical Systems, Institute of Mathematical Problems of Biology,
Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia

~Received 2 August 1999; accepted 24 November 1999!

A mean-field, microscopic theory of an excess electron solvated in a molten salt is presented.
Starting with the grand partition function of the system, we reformulate the problem to evaluate a
mean field induced by charges and calculate self-consistently the electron density distribution. We
obtain a Poisson–Boltzmann equation for the mean-field and Schro¨dinger equation for the electron
wave functions with a potential dependent on the mean field and a local density of melt. We also
derive expressions for electron–ion correlation functions. We demonstrate that the mean field is
weak in molten salts and can be analytically evaluated in the Debye–Hu¨ckel limit. Using a simple
variational treatment, we calculate energetic and structural properties of a solvated electron for a
wide range of alkali halide melts. These properties are mainly determined by the polaron effect,
while the repulsion between the electron and ion cores leads to a remarkable variance of the
properties. The results obtained are in good agreement with path-integral simulations and
experimental data on the maximum of the absorption spectrum of an electron solvated in these
melts. © 2000 American Institute of Physics.@S0021-9606~00!51107-6#
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I. INTRODUCTION

The behavior of a solvated electron in various media
been the focus of attention for the last few decades.1–4 Re-
cent progress in computing technique and numerical sim
tions based on path-integral methods has stimulated inte
in the problem. Polaron and semicontinuum models5 of a
solvated electron allow to treat the solvated electron beh
ior with regard to the effects of cavity formation and polar
tails. Modern RISM-polaron~reference interaction site
model!6,7 and mean-field8,9 theories are a good tool to calcu
late equilibrium properties of an electron solvated
nonpolar8,10–12 and dipolar hard-sphere solvents,9,13 molten
salts,14 and water15,16 with regard to the microscopic struc
ture of solvent and electron–solvent interactions. The mod
require extensive numerical computations.

Special attention is given to an electron solvated in m
ten salts and metal–molten–salt solutions.17–21 Structural
and thermodynamic properties of molten salts are thoroug
studied numerically and experimentally.22 Dramatic concur-
rence of long-range Coulomb attraction and short-range
pulsion effects are revealed there. Occurrence of strik
phenomena such as nonmetal–metal transitions, bipol
formation23,24 in the systems sends researchers to investig
them time and again.

In this paper, we develop a statistical theory of an el
tron solvated in molten salt, starting with the grand partiti
function for the coupled electron–Coulomb–liquid system

Using path integral field formalism, we reformulate th
problem to evaluate a mean-field induced by charges
calculate self-consistently the electron density distribut
for the ground and first excited states of an excess elect
As a result, we derive nonlinear differential equations de

a!Electronic mail: gena@impb.psn.ru
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s

a-
st

v-

ls

l-

ly

e-
g
on
te

-

d
n
n.
r-

mining the electron density distribution and the mean fie
and correlate them with the RISM-polaron treatment us
integral RISM-like equations. We show that for the syste
under consideration the Debye screening is strong and
mean field is weak, which enables us to evaluate the m
field in the Debye–Hu¨ckel limit. We apply the method to
calculate equilibrium energetic and structural properties
the solvated electron for a wide group of alkali halide me
Of special interest is the evaluation of the absorption sp
trum of a solvated electron, since there are a lot of data
this spectrum in the molten salts.25–27 Using a simple varia-
tional treatment we consider the influence of the Coulo
attraction and short-range repulsion between the electron
ions on the behavior of the solvated electron.

The paper is organized as follows. In Sec. II we descr
the model, considering the grand partition function of t
system. In Sec. III using a path-integral field treatment,
reduce the problem to the evaluation of a mean field indu
by charges, which is determined by a Poisson–Boltzm
equation, and self-consistent calculations of electron w
functions determined by a Schro¨dinger equation. Section IV
deals with an analytical evaluation of the mean field, o
tained in the Debye–Hu¨ckel limit. Numerical results and dis
cussions are presented in Sec. V, where we use the
obtained to calculate the maximum of the absorption sp
trum of an electron solvated in various alkali halide molt
salts. There, we also compare the results obtained with
available numerical and experimental data. Appendixes
and B include several of mathematical steps omitted from
main text.

II. STATEMENT OF THE PROBLEM

Let us consider an excess electron in a molten salt. I
interacting with the electron are a source of a potential. T
7 © 2000 American Institute of Physics
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detailed study of the potential field is very difficult. But w
can treat this field as a disordered one, use a self-avera
procedure, and calculate electron characteristics via ther
dynamic and structural parameters of the molten salt.

We start the statistical treatment of an electron dissol
in a molten salt, considering the grand partition function
the systemJ. We use the system of units for which\5m
5e51. For simplicity, we suppose that chemical potenti
of ions (m1 ,m2) as well as their masses (M 1 ,M 2) are
equal, i.e., m15m25m and M 15M 25M , while ion
charges are equal to61, considering the molten salt as
symmetric 1-1 electrolyte. Then, the grand partition funct
J can be written as the functional integral depending on
ion configurationR$N% and the electronic pathr (t)

J5 (
N>0

`
@~2pM !23/2b3/2V exp~bm!#N

N! E D@r ~t!#

3E dR$N% exp@2Q#,

Q5FbUii 1E
0

b

dtF ṙ2~t!

2
1(

i

N

u6~r ~t!2Ri 6!G G , ~1!

where Uii (R
$N%) denotes the ion–ion interaction potentia

u6(r2Ri 6) is the electron–ion potential,V is the volume of
the system,b is the inverse temperature,Ri 1 ~or Ri 2! is the
coordinate ofi th positive~or negative! ion.

To reveal the effects of short- and long-range forces,
decompose the ion–ion potential into the Coulomb p
uq(R)5R21 and the short-range componentUs(R) as a
hard-sphere potential

Uii ~R$N%!5Us~R$N%!1
1

2 (
iÞ j

6uq~Ri 62Rj 6!. ~2!

The signs in Eqs.~1! and ~2! depend on the signs of inter
acting charges.

To describe electron–ion interaction, we use a sim
local pseudopotential. For the interaction between the e
tron and a negative ion, the pseudopotentialue2(r ) includes
the Coulomb partuq(r ) and the hard-sphere repulsion com
ponentues(r ,d2), the latter takes into account the exclud
volume effect

ue2~r !5uq~r !1ues~r !. ~3!

On the other hand, the electron–cation potentialue1(r ) be-
ing purely Coulomb attraction at large distances can be m
eled by the constantue1(r ,d)5ue1(d), where the cut-off
distanced is an adjustable parameter

ue1~r>d!52uq~r !, ue1~r ,d!5ue1~d!. ~4!

A similar form of the electron–cation pseudopotential a
commonly used in computer simulations.14,18–21,28

To find the grand partition functionJ, we should calcu-
late the complicated multidimensional integrals in Eq.~1!,
and then evaluate the series overN. Various statistical meth-
ods can be used for this purpose. In principle, we can c
sider a molten salt with an excess electron as an ensemb
classical ions in an external field. The source of the field
an excess electron. Therefore, the problem can be reduc
ing
o-

d
f

s

e

e
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e
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n-
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s
to

an evaluation of the grand partition function for a symmet
electrolyte in an external field. Then we should calcula
self-consistently the electron density distribution which
duces the external field.

III. MEAN-FIELD APPROXIMATION

In view of the above treatment, we reformulate~1!, us-
ing the standard field-theoretic approach.29,30 As a result, the
grand partition function can be written as the path integ
over the electric fieldC induced by charges~see Appendix
A!

J5J0E D@r ~t!#E D@C#exp@2bV$C,r ~t!%#,

~5!

Q5Te1~C2ue!*
uq

21

2 * ~C2ue!2b21A~C,r ~t!!.

HereV is the thermodynamic potential of the system,Te is
the kinetic energy of the electron, the long-range compon
of the external field induced by the electron is

ue~R2r !5
1

2b E
0

b

@uq~R2r ~t!!2ue1~R2r ~t!!#dt,

and uq
215 1

4 pD(r ) is the operator inverse to the Coulom
interactionuq(r ). The symbol ‘‘* ’’ denotes the convolution
integration:y* x[*x(R)y(R2R1)dR1 .

The last term in Eq.~5! reflects the changes in the dis
tribution of ions, caused by the electric fieldC(R). It can be
written in terms of the average ion densityr and the total
correlation functionhs(r ) of hard spheres~see Appendix A!
as

A~C,r ~t!!5r* f q1
r2

2!
f q* hs* f q1¯ , ~6!

wheref q is the generalized Mayer function of the electron
the mean field

f q~R,r ~t!!5
1

2 S exp@bC~R!#1expF2bC~R!

2E
0

b

ues~r ~t!!dtG22D . ~7!

Thus, we should evaluate path integrals over elect
path r (t) and over a classical fieldC(R). Below, we will
show that the path integral over the electric field include
large parameterba@1 ~wherea21 characterizes the aver
aged electron radius!. Therefore, the saddle point method c
be used to calculate the path integral over the electric fi
The saddle point determines the mean-fieldC̃(R) as

]V

]CU
C5C̃

50. ~8!

We will derive the explicit expression forC̃ in Sec. IV, and
calculate it analytically, using various relations between
mean-field and electron–ion correlation functions.

The integral over electron path can be estimated b
trial actionS0 . Using Jensen’s inequality, we find
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J>E D@r ~t!#exp@2S0#exp~^S02bV&S0
!

[exp@2bVe f#, ~9!

where symbolŝS02bV&S0
denote averaging with the use o

trial actionS0

^S02bV&S0
[E D@r ~t!#~S02bV!exp@2S0#. ~10!

Equation ~9! determines the effective thermodynam
potentialVe f . If the trial actionS0 depends on a paramete
a, the upper bound of estimate~9! can be found by searchin
the extremum of the effective thermodynamic potentialVe f

with respect toa. The latter yields a set of nonlinear alg
braic equations relating the parametera and parameters o
Ve f . This method of electron path integral was used
RISM-polaron theory for the quadratic trial action.6,7 An-
other way for estimating Eq.~9! is its variational treatmen
by the electron density matrix%(r ,r 8) related to the Green’s
function G(r ,r 8)5S if i(r 8)f i(r )exp(2bWi)

31,32 ~whereWi

andf i is the total energy and wave function ofi th electron
state!. These variational estimates lead to a Schro¨dinger
equation forf i(r ), and allow to find the states of an exce
electron which does not form chemical bonds.

We assume that the ground electron state is not de
erate and dominant, i.e.,buW02Wi u@1, and restrict our-
selves to only the consideration of the ground wave funct
f0(r ) of the electron~the evaluation of the first excitatio
will be obtained below!. Then, the averaginĝ̄ &S0

changes

into averaging over the electron density distributionf0
2(r ).

As a result of this procedure the potentials depending on
electron path change to averaged potentials~see Appendix
B!, i.e., ues→^ues&[ues* f0

2, ue→^ue&[ue* f0
2, i.e.,

Ve f5Te1~C̃2^ue&!*
uq

21

2 * ~C̃2^ue&!

2b21A~C̃,^ues&!. ~11!

Then, the upper bound of Eq.~9! can be obtained by the
extremum

]Ve f

]f0
50. ~12!

The extremum results in the nonlinear Schro¨dinger equation

F2
D

2
1Ve f~r ,$f0%!2W0Gf050, ~13!

where Ve f(r ,$f0%) is the self-consistent effective potenti
for an excess electron in liquid

Ve f~r ,$f0%!5s* ~C̃2^ue&!1ues* r~11rhs* f q!

3exp@2b~C1^ues&!#/2, ~14!

here we introduce the switching functions5uq
21

* ue deter-
mining the influence of cation core. For our choice ofue1

the Fourier transform of the switching function iss(k)5(1
1sin(kd)/kd)/2, where d is the cut-off distance@when d
n-

n

e

→0, s(k)→1#. The first and the second terms of Eq.~14!
correspond to the short- and long-range components of
effective potentialVe f .

We can also define electron–ion correlation functio
ge2(r ) andge1(r ), determining the probability for anion o
cation to occur at distancer from the center of electron lo
calization

ge1~r !5
dVe f

d^ue1&
5~11rhs* f q!exp@bC̃#, ~15!

ge2~r !5
dVe f

d^ue2&
5~11rhs* f q!exp@2bC̃2b^ues&#.

~16!

Using these functions, we express the effective potential

Ve f5r~ue1* ge11ue2* ge2!/2. ~17!

Thus, the problem of an excess electron in a molten sa
reduced to computation of mean fieldC̃, and to self-
consistent evaluation of the ground electron functionf0(r ),
depending on the parameters of molten salt via the electr
ion correlation functions.

To calculate the mean field, we rewrite Eq.~8! as the
Poisson–Boltzmann equation

uq
21

* ~C̃2^ue&!5re f~r !5r~ge12ge2!/2, ~18!

wherere f(r ) is the effective density of charges. The latt
can be transformed into the integral equation

C̃5^ue&2re f* uq , ~19!

which is similar to the Ornstein–Zernike equation. It relat
the mean field and the electron–ion correlation functions
pending on this field via Eqs.~15! and~16!. Relation~19! is
nonlinear and can be calculated only numerically, but we
find an analytical solution to Eq.~19! in the Debye–Hu¨ckel
limit when the mean field is small.

IV. EVALUATION OF THE MEAN FIELD IN THE
DEBYE–HÜCKEL LIMIT

We symmetrize the generalized Mayer functionf q by

the shiftĈ5C̃1^ues&/2 and expand the thermodynamic p
tentialVe f taking into account only the terms whose order

lower than the second one with respect toĈ. As a result, we
arrive at the expression for the thermodynamic potential

Ve f5Te1~Ĉ2^ûe&!*
uq

21

2 * ~Ĉ2^ûe&!

2b
r

2
~11rhs* f es!Ĉ* ~11 f es!Ĉ1Vs , ~20!

where we also use the shifted external field^ûe&5^ue

1ues/2&, while Vs and f es are the relevant quantities arisin
from short-range electron–ion repulsion

Vs52rb21S f es1
r

2
f es* hs* f esD ,

~21!
f es5exp@2b^ues&/2#21.
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We introduce the quantities:z(k)Ĉ(k)5*(11rhs* f es)

3exp@2b^ues&/21 ikr #Ĉ(r )dr , ŝ(r )5ûe* uq
21 and the in-

verse Debye radius,5(4prb)1/2. Then we find the formal
explicit expression for the Fourier transform of the me
field

Ĉ~k!5
4p ŝ~k!f0

2~k!

k21,2z~k!
. ~22!

Note that when the excess electron is considered to b
point charge, i.e.,ŝ(k)5f2(k)5z(k)51 the mean field

takes the Debye–Hu¨ckel form: Ĉ(r )5exp@2,r #/r . Since
the thermodynamic potential~20! is quadratic with respect to

the mean field, the path integral over fieldĈ can be analyti-
cally evaluated, resulting in the final expression for the
fective thermodynamic potential

Ve f5Te1Vs2
1

p E ŝ2~k!,2z~k!f0
4~k!dk

k21,2z~k!
. ~23!

The explicit expressions forge6 are easily obtained if we
consider the zero- and the first- order terms over the m
field in Eqs. ~15! and ~16! and use expression~22!. As a
result, we find the Fourier transform of the effectiv
electron–solvent potentialVe f(k) including the repulsive
short-range (Vs) and attractive long-range (Vl) components

Ve f~k!5Vl1Vs52
ŝ2~k!,2z~k!f0

2~k!

k21,2z~k!
•

4p

k2 1
r

2

3@~12 ŝ!uqge11uesge2#. ~24!

As is seen Vs(k→0)5V05const, while Vl(k→0)
524p/k2.

For qualitative estimates we will characterize the grou
electron state by a single parametera related to the mean
electron radiusr e5^r 2&1/2;a21. Note that the expansion in
series ofĈ is correct whenbĈ!1. For our estimate~22! we
havebĈ(0)'f2(0)/r1¯}a3/r which is small in view
of our assumption that the solvated electron does not f
chemical bonds. Point out that in the systems under con
erationr e'3 Å while ,'7.5 Å21, i.e., r e,@1 and the ef-
fective thermodynamic potential~23! represents the zero
and the first-order terms of the expansion in series
(r e,)21. Our numerical calculations show that the cons
eration of the second order term in Eq.~23! changes the
results by less than 1%, therefore, for estimates we can
the simplified thermodynamic potential

Ve f5Te1Vs2
1

p E ŝ2~k!f0
4~k!dk, ~25!

where we separate different effects of electron–ion inter
tions. The second term in Eq.~25! results from the excluded
volume effect similar to theF-center formation, while the
third term is determined by the Coulomb interaction mo
fied by cation–core effect. Thus our problem is reduced
evaluation of Eq.~25! which can be transformed to the ca
culation of a Schro¨dinger equation with the correspondin
self-consistent potential. In this paper we will obtain var
a

-

n

d

m
d-

f
-
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-
o

-

tional estimates of Eq.~25! using simple trial wave functions
for the ground and first excited electron states.

Using a simple trial wave functionf0(r )5f0(ar ) for
the electron ground state, we reduce the evaluation of
grand partition function to the search for the extremum

]Ve f

]a
50.

This extremum for the simplified thermodynamic potent
~25! yields the nonlinear algebraic equation fora

a5C1@11 f ~ad!#1
C2r

ba4 F11
prs3

3
~11C3sa!G , ~26!

whereC1 , C2 , andC3 are constants depending on the ty
of the wave function chosen, whilef (ad) is a function de-
termining the influence of cut-off distanced, and s is the
hard-sphere diameter of ions. To evaluate analytically
excluded volume we use the steplike approximation
hs(r ): hs(r ,s)521, hs(r>s)50, and f es(r ): f es(r ,r e)
521 and f es(r>r e)50.

For the known self-consistent effective electron–solv
potential we can calculate the first excited electron state
the potential. Using a simple trial wave function for the fir
excited electron statef1(a1r ) depending on parametera1 ,
we also reduce the problem to the search for the extrem

]Ṽe f

]a1
50,

~27!
Ṽe f~a,a1!5Te1Ve f~$f0%!* f1

2.

Thus for simple variational estimates we can find t
extremum ofVe f(a) and then the extremum ofṼe f(a,a1),
and using these data calculate energetic and structural c
acteristics of an excess electron in various molten salts.

To complete the mean-field study we will correlate o
results with those obtained within the RISM-polaro
theory6,7 based on the solution to the corresponding integ
equations. For this purpose we consider the quantities

Ce652 f es2b~11 f es!ue6 , ~28!

which play the role of the electron–ion direct correlatio
functions. Then again taking into account only the ter

whose order is lower than the second one with respect toĈ
and evaluating analytically the quadratic path integral o
the electric field, we result in the effective electron function

bV5bTe1
r

2 * ~Ce11Ce2!

1
b22

2 E
0

b

dtE
0

b

dt8U~r ~t8!2r ~t!!, ~29!

whereU(r )5S i j Cei* x i j * Ce j is the influence functional po
tential and x i j (r2r 8) is the density–density correlatio
function of the electrolyte, which is related to the total co
relation function hi j of the symmetric electrolyte:x i j (r )
5rd(r )1r2hi j (r ). This effective electron functional is th
starting point of the RISM-polaron treatment.6,7 The
electron–ion correlation functions derived by us can also
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transformed into the integral form. Taking into account th
the Fourier transformf0

2(k) is related to the average inte
polymer correlation functionv(k),33 i.e.,

f0
2~k!.v~k!5b21E

0

b

v~k,t!dt, ~30!

and considering only the zero- and first-order terms, we
rive at

gei511hei511(
j

v* Ce j* x i j /r. ~31!

Various closures can be used to complete Eq.~31!. Our treat-
ment corresponds to the mean spherical approximation
which Ce6(r .r e)52bu6 and ge6(r ,r e)50. Another
widely used closure is based on the hypernetted chain
proximation~HNC! for which

ge6.exp@6bĈ#. ~32!

Substituting expression~22! for Ĉ in this equation and tak
ing into account that

re f~k!52
,2z~k!

k21,2z~k!
ŝ~k!f0

2~k!

.r(
i

hi j ~k!Cei~k!f0
2~k!, ~33!

we result in the closure

gei.expF2b^uei&1 K( Cei* rhi j L G , ~34!

which is derived in Ref. 15 by the optimized perturbati
theory.

Thus we see three ways to calculate structural and e
getic properties of the solvated electron, namely, to ob
variational estimates by solving nonlinear algebraic eq
tions @Eqs. ~26! and ~27!#, to calculate the coupled Schro¨-
dinger and the Poisson–Boltzmann differential equati
@Eqs. ~13! and ~18!#, and to solve linear integral equatio
@Eq. ~31!# with various closures together with variation
treatment of the effective electron functional~29!. The first
way is the simplest one and does not require extensive c
putations, we will use it to study the behavior of an exce
electron in alkali halide melts.

V. RESULTS AND DISCUSSIONS

The case when the short-range components ofue1 and
ue2 are ignored~polaron limit! is studied in Ref. 34. There
the electron behavior is described by the polaron effec
functional

Ve f5Te2
1

p E f0
4~k!dk. ~35!

Note that in the polaron limit the electron kinetic (Te), po-
tential ~P!, and totalW0 energies satisfy the virial theorem

uTeu:uW0u:uPu51:3:4. ~36!

Expressing the polaron functional via the parametera we
find Ve f}a22Ca. The extremum of the functional yield
t

r-

or

p-

r-
in
-

s

-
s

e

a5a05const andVe f52Ca0/2, the latter results in the
large parameterba0@1 of the saddle point approximatio
~8!. As is seen from the relations, the electron energy and
electron mean radius are independent of the parameter
molten salt. The correlation functionge1(r ) obtained in the
polaron limit34 at small distances ge1(r→0).1
1f0

2(r )r21 is close to that found by the RISM-polaro
theory.14 The ratio between the relevant electron energ
found by path-integral simulations18 is also close to that
given by Eq.~35! and only slightly changes as the cut-o
radiusd varies.

Therefore, we conclude that the Coulomb interactio
resulting in the self-consistent polaronlike state make
main contribution to the behavior of an electron solvated
molten salt. But the polaron treatment yields rather a sim
fied picture of the behavior of the solvated electron. In p
ticular, the polaron limit does not allow one to consid
short-range repulsion effects or the effects of finite size
ions. The polaron model cannot explain the variance of
ergetic and structural properties of the solvated electron
the ion size changes.

To investigate the behavior of the solvated electron w
the account of the excluded volume and cation c
effects by variational estimates for the extrema

Ve f(a),Ṽe f(a,a1), we use various types of the wave fun
tions for the ground and the first excited electron states.
best estimate is obtained for the hydrogenlike functions

f0~r !5Aa3

7p
~11ar !exp~2ar !, ~37!

f1~r !5Aa1
5

p
r cosQ exp~2a1r !, ~38!

where r and Q are the absolute value and the angle of t
radius-vector, respectively. Note that in the polaron limit t
difference between the electron energies obtained by the
act solution to the Schro¨dinger equation and that found b
variational estimate using Eqs.~37! and~38! is less than 1%.

First, we examine the influence of cation core, ignori
the hard-sphere repulsion of negative ion, i.e.,ues[0. Ini-
tially we determine the cut-off distance from the experime
tal data on the first ionization potentials for alkali meta
namely, Li~5.39 eV!, Na~5.14 eV!, Cs~3.89 eV!, K~4,339
eV!, Rb~4,176 eV! by searching the extremum with the hy
drogenlike potential, using the trial wave function in th
form ~37!. The resultant values are listed in Table I, they a
slightly different from that found by local pseudopotenti
method.35

The extrema yield the nonlinear equations fora anda1 ,
which we present here in the explicit form by expanding
series ofad

a50.4997228.129•1022~ad!211.466•1022~ad!4

23.01•1023~ad!617.9•1024~ad!8

23.8•1024~ad!101¯ , ~39!
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TABLE I. Salt parameters@temperatureT, mean ion diameters ~Ref. 37!, densityr ~Ref. 36!, cut-off radiusd#
and calculated total energies and mean radii of the ground and first excited electron states in various
akali halides.

T ~K! s ~Å! r (1022 Å 23) d ~Å! r 0 ~Å! r 1 ~Å! 2W0 ~eV! 2W1 ~eV!

LiF 1210 1.74 8.15 1.58 2.29 4.53 3.91 2.41
LiCl 953 2.19 4.15 1.58 2.56 4.68 3.78 2.33
LiBr 889 2.24 3.39 1.58 2.63 4.72 3.73 2.31
LiI 801 2.47 2.71 1.58 2.71 4.78 3.69 2.29
NaF 1370 1.97 5.37 1.69 2.40 4.64 3.78 2.35
NaCl 1160 2.43 3.07 1.69 2.61 4.77 3.68 2.29
NaBr 1100 2.55 2.62 1.69 2.67 4.80 3.65 2.28
NaI 1007 2.61 2.12 1.69 2.75 4.85 3.60 2.25
KF 1220 2.30 3.80 2.16 2.63 4.98 3.40 2.20
KCl 1126 2.69 2.37 2.16 2.80 5.07 3.35 2.16
KBr 1087 2.86 2.08 2.16 2.85 5.10 3.33 2.15
KI 1030 3.05 1.72 2.16 2.93 5.14 3.30 2.13
RbF 1150 2.38 3.20 2.28 2.82 5.12 3.31 2.15
RbCl 1075 2.80 2.15 2.28 2.87 5.16 3.26 2.12
RbBr 1042 2.98 1.91 2.28 2.92 5.19 3.25 2.11
RbI 994 3.09 1.60 2.28 2.99 5.23 3.22 2.10
CsF 1054 2.62 2.77 2.51 2.85 5.27 3.16 2.08
CsCl 991 2.99 1.90 2.51 2.99 5.33 3.11 2.05
CsBr 981 3.15 1.68 2.51 3.03 5.35 3.10 2.05
CsI 971 3.28 1.39 2.51 3.09 5.39 3.08 2.03
rs
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The
14a~m11!2~20m51106m41392m31196m2156m17!

12~ad!2~10m5145m4!211/9~ad!4~2m6

116m527m4!12/35~ad!6~m818m7158m6

254m5!22,8•1022~ad!8~m818m7232m6

24m5!21,1•1023~ad!10~5m12140m111140m10

1280m91368m81424m71144m6218m5!1¯

50, ~40!

wherem5a1 /a. The computation of these equations diffe
from the solution to the exact transcendent equations only
several percents atd<2.3 Å.

Figure 1 plots the results of the calculations: the dep
dencies of the total and potential energies for the gro
(W0 ,P0) and first excited (W1 ,P1) electron states on th
cut-off radiusd. Figure 2 depicts the mean radii for the fir
(r 1) and the ground (r 0) electron states versus the cut-o
distanced. They increase as the distance rises. For KCl,
y

-
d

r

estimate yieldsr e.3.4 Å, while the path integral and RISM
polaron calculations result in a smaller valuer e.3.2 Å.14

We use the differenceDW5uW02W1u to estimate the
maximum of the absorption spectrum~Fig. 3!. It is evident
that it decreases as the cut-off radius rises. In Fig. 3 we
present the experimental data on the maximum of the abs
tion spectrum25–27 and the results corresponding to the p
laron limit. We see that our estimates accounting only
cut-off distance effect correctly describe the changes in
maximum of the absorption spectrum but underestimate
absolute value for K- and Na-ions.

The consideration of short-range componentues(r ) re-
sults in the formation of a vacancy of the type ofF-center.
We calculate the structural and energetic properties of
solvated electron in alkali halide melts by searching the
tremum for thermodynamic potentials~25! and~27!. The ex-
cluded volume effect results in a stronger localization of
solvated electron leading to a decrease in the electron m
radiusr e by 15%–20%. Table I lists the data on the electr
total energies for the ground and the first excited states.
n-
FIG. 1. Dependencies of the total and the potential e
ergies for the ground (W0 ,P0) and first excited
(W1 ,P1) electron states on the cut-off radiusd.
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FIG. 2. The mean radii of the ground (r 0) and the first
excited (r 1) electron states versus the cut-off distan
d.
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corresponding mean radii for alkali–halide melts are a
presented in the table. The data on temperature-depen
densities of the melts were taken from Ref. 36. For ion ra
we use data obtained by Abramoet al.37 The change in the
used ion radii by 10% changes the found data by less t
1%. We have examined the temperature dependence o
absorption maximum, taking into account only the tempe
ture dependence of salt density. It provides the correct s
of vmax versus temperature, but yields the results qual
tively different from available experimental data. We belie
that the use of more accurate data on the structural prope
of salt, i.e.,hs(r ) can offset this disadvantage.

Figure 4 plots the comparison of the calculated ma
mum of the absorption spectrum by our theory and wit
the RISM-polaron treatment,19,20 and available experimenta
data.25–27 As is seen, our estimate is in a good agreem
with the experimental data. The variational estimates
experimental data differ by 10%–15% for Na- and Cs io
The difference between the theory and the experiment m
result from insufficient consideration of the cation core
fect.

Thus, starting with the exact grand partition function
the system we have derived nonlinear deferential equat
determining the mean-field and the electron density distri
tion. Using the simple variational treatment we have exa
ined the behavior of the solvated electron in molten salts.
conclude that our simple variational treatment provides c
o
ent
ii

n
the
-
ift
-

ies

-

t
d
.
y

-

f
ns
-
-
e
r-

rect estimates of structural and energetic characteristics o
excess electron in alkali halide melts. We have found that
properties of the solvated electron are mainly determined
the polaron effect, while the short-range effects such as
F-center formation and the cation–core effect leads to a
markable variance of the equilibrium electron characterist

Although we have considered a simplified case, i.e.
symmetric 1-1 electrolyte, our treatment can be extende
the dipolar liquids, ion–dipole mixtures and metal–molte
salt solutions. A similar treatment was also used to study
electron solvated in a disordered medium31 and liquid
helium.32 Therefore, the above treatment is rather gene
and can be applied to a wide range of problems dealing w
an excess quantum particle in spatially disordered me
The main criterion of the theory is that the numberÑ of
environmental particles interacting with the excess elect
be large, i.e., Ñ}ra23@1. Otherwise we should us
quantum-chemical methods.

APPENDIX A: PATH-INTEGRAL TREATMENT OF THE
GRAND PARTITION FUNCTION

We introduce the generalized charge densityrq(r ) and
the generalized ion densitiesr6(r ), respectively
xi-

FIG. 3. DifferenceDW vs the cut-off radiusd, the sym-
bols correspond to the experimental data on the ma
mum of the absorption spectrum~Ref. 25–27!, while
the horizontal line—to the polaron limit.



ent
r-

on

4714 J. Chem. Phys., Vol. 112, No. 10, 8 March 2000 G. N. Chuev and V. V. Sychyov
FIG. 4. The calculated~circles! and the experimental
data~Refs. 25–27! ~triangles! on the maximum of the
absorption spectrum in molten salts, solid lines pres
the spline approximation of the data, large circles co
respond to the data obtained by the RISM-polar
theory ~Refs. 19 and 20!.
m

s

er

q.

f

r6~r !5(
i

N/2

6d~r2Ri 6!, rq~r !5r1~r !1r2~r !.

~A1!

Then the exponent indexQ in the grand partition functionJ
is given by

Q5bS Te1ue* rq1Ues* r21rq*
uq

2 * rq1UsD , ~A2!

here we use the notationUes5b21*0
bues(r (t))dt. For the

Coulomb potentialuq(r ), we can use the Fourier transfor
of an exponent with a quadratic index

exp[1
2 rq* uq* rq] 5 H E D[C]exp[2 1

2 C* uq
21

* C] J 21

3E D@C#exp@2 1
2 C* uq

21
* C

1rq* C#, ~A3!

whereuq
21(r ) is the operator inverse touq . Then, Eq.~A2!

becomes

J5J0E D@C#expF2bTe2
b

2
~C2ue!* uq

21
* ~C2ue!G

3I ~C,Ues,Us!,
~A4!

I ~C,Ues,Us!

5 (
N>0

` E dR$N%
zN

N! )i

N

exp@b~6C~Ri 6!2Us~R$N%!

2Ues~Ri 2!#.

Let us introduce n-particle correlation function
rs

(n)(r 1 ,...r n) of hard spheres

rs
~n!~r1 ,...rn!5J21(

N

`
zN

~N2n!!

3E exp@2bUs#dR$N2n%. ~A5!

Then, the configurational partI (C,Ues,Us) is given by
I ~C,Ues,Us!511 f q* rs
~1!1

1

2!
f q* rs

~2!
* f q1¯

1
1

n!
f q* rs

~n!
*¯ f q . ~A6!

Taking into account thatrs
(1)[r and rs

(2)5r21r2hs(r )
~wherehs is the total correlation function for hard spheres!,
and ignoring irreducible correlations whose order is high
than the second one, we arrive at

I ~C,Ues,Us!511 (
k51

`

~ f q* r!k/k!

1 (
k52

` S 1

2!
f q* r2hs* f qD kY k!. ~A7!

Transforming it in the exponent and substituting into E
~A4! we result in Eq.~5!.

APPENDIX B: ESTIMATES OF THE ELECTRON PATH
INTEGRAL BY THE GROUND WAVE FUNCTION

First, we consider the term in Eq.~5! which is a linear
functional 2bC* uq

21
* ue . Denoting the part2bC* uq

21

independent of an electron path asCe , we have for averag-
ing

^exp@Ce* ue#&S0
511 K Ce* ue1

1

2!
~Ce* ue!

21¯ L
S0

511Ce* ue* %1

1
1

2!
~Ce* ue!* %2* ~Ce* ue!

1
1

3!
~Ce* ue!* %3* ~Ce* ue!* ~Ce* ue!

1¯ , ~B1!

where we use%n which are then-order density matrices o
the electron subsystem.

Relation~10! means that all then- order density matrices
are expressed via the first-order electron density matrix%,
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i.e., %2(x,x,y,y)5%(x,x)%(y,y), %3(x,x,y,y,z,z)5%(x,x)
3%(y,y)%(z,z), etc. Using this property and bearing
mind that the electron ground state is dominant, i.e.,ue* %
;ue* f0

25^ue& we have

^exp@Ce* ue#&S0
511Ce* ^ue&1

1

2!
~Ce* ^ue&!21¯

5exp@Ce* ^ue&#. ~B2!

Similar relations also take place for the bilinear term in E
~5!, only the first nontrivial term in the series expansion h
the second order

K expF2b

2
ue* uq

21
* ueG L

S0

511 K 2b

2!
ue* uq

21
* ue1¯ L

S0

511
2b

2!
~ue* uq

21
* ue!** %21¯

5expF2b

2
^ue&* uq

21
* ^ue&G . ~B3!

To find ^ f q& we should initially expand it in series an
then average linear, bilinear, and all other higher order ter
As a result, we arrive at

K expF2E
0

b

ues~r ~t!!dtG L 5exp@2b^ues&#. ~B4!

Averaging f q* f q in the similar manner, we obtain Eq.~11!.
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