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Mean-field treatment of polarons in strong electrolytes
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Using variational estimates for the grand partition function, we have developed a microscopic theory of an
excess electron in an ionic liquid at high ion concentrations. We have derived the free-energy functional for the
electron and have calculated electron energies for the ground and the first excited states as well as electron-ion
correlation functions versus thermodynamic parameters of liquid and parameters of electron-ion potentials. We
have found that the energetic characteristics of solvated electron are mainly determined by the Coulomb
interaction which gives birth to polaronlike states, while ion cores have a pronounced quantitative effect on
these characteristics. The local solvent structure around the excess electron is determined by the mean field
induced by ions. Using the method developed we have calculated polaron characteristics in molten salts, such
as the maximum of the absorption spectrum and its variations caused by changes in temperature, density, and
composition of the electrolyte. The data obtained are in agreement with experiments and computer simulations.
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[. INTRODUCTION when the mean field is negligible. Here we extend our ap-
proach to strong electrolytes and investigate polarons in lig-
Excess electrons in ionic liquids have been the subject ofiids consisting of ions and dipoles. The influence of changes
considerable studig4—6]. Interest in such systems is causedin temperature, density or composition of electrolyte on the
by the fact that they exhibit a wide variety of electric and Polaron characteristics will also be studied.
magnetic properties due to dramatic competition between The paper is organized as follows. In Sec. Il starting from
long-range Coulomb attractions and short-range repulsion ethe grand partition function we state the problem and de-
fects. Metal-ammonia solutions as well as molten salts ar&cribe the system under consideration. In Sec. Ill we use
real objects where striking phenomena such as nonmetayariational estimates of the electron path integral and field
metal transitions, formation of bipolarons are observedransformation to evaluate the grand partition function of the
[2—4,7. Excess electrons in such liquids provide a simpleSystem and derive the free-energy functional of the electron.
example of mixed quantum and classical systems, which exXVe will derive analytical relations for polaron characteristics
hibit a large number of various effects and are convenientlyVith the use of an asymptotic analy$&ec. IV A). Results of
studied by quantum statistical methods. By now extensivé@ur numerical calculations and their application to localized
evidence has been accumulated on structural and thermod§lectron states in molten salts are presented in Sec. IV B, and

namic properties of these liquid8]. discussed in Sec. IV C.
Path integral simulations have provided the basis for the
study of excess electrons in such systésl14]. According Il. DESCRIPTION OF THE SYSTEM

to the data of these simulations, an excess electron forms a

localized pol lik o th Ui | Let us consider an ionic liquid with excess electrons dis-
ocalized polaronlike state In the solutions at low concentray, e there. We suppose the number of the electrons to be
tion of metals. But the local structure and the behavior of th

| differ sianifi v f h ¢ similar f &mall so that we can ignore electron-electron interactions and
polaron state difer significantly from those of similar forma- o qyict ourselves to a single-electron problem. The liquid is
tions in solids[15].

Another way to treat excess electrons in liquids is base ssumed to consist of ions with chargks andZ ., respec-
. : ) ; ively, and dipolar particles with dipole momentuin the
on integral equationdlE) [16—23. The IE provide a micro- y P P P

: T L ase under consideration the averaged density of di S
scopic description of liquids as well as an accurate accourn g Y ol

oo . . : supposed to be considerably smaller than the correspond-
of peculiarities of electron-solvent interactions. The imple- PP y P

: o .ing densities of aniona,_ and cationng,, .
mentation of these methads has been faciliiated by special In the statistical treatment an ensemble of classical par-

numerical algorithms and powerful computers. ticles interacting with an excess electron is described by the

| RﬁCﬁndtliy wlevhgvi(re] ?:vlt;:Icr)lped[&sgg|a\:\:1kﬁly;|(;aljtheor¥hof ar(_],Jrand partition functior, which can be written as the func-
eiectron cissolve notten satisa, 24, WhICh recuces e - i, nq) integral depending on the solvent configuration and
problem to an evaluation of a mean field induced by charge§ne electron path(7):

and a self-consistent calculation of the electron density dis-
tribution. We have calculated equilibrium energetic proper- * N
ties and evaluated the absorption spectrum of the excessE= », —a| D[r(r)]J dRN exd — B(Uggt T+ U,
electron for a wide range of alkali halide melts in the case N=o N

tUe-tUe)], @

* Author to whom correspondence should be addressed: Electroniwhere we use the system of units for whitl-m=e=1,8
address: gena@impb.psn.ru stands for the inverse temperature, agdtands for the ac-
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tivity of solvent particles, assumed to be the same for all thavhere symbols(---) denote averaging over the electron

solvent particles. Coordinates of anigi®_}, cations{R,},  density distribution:3(r). Thus, we reduce the problem to

and dipoled R4} as well as dipole orientatiori&uler angles  an evaluation of the grand partition function in an external

{wq} determine a configuratioR™! of solvent particles. field induced by an excess electron, which includes short-
The first termUs(RN}) in (1) is the interaction potential and long-range components depending on the electron den-

between solvent particles, the second terri  sity distribution.

= [8r2(7)d /28 is the kinetic energy of the electron, and the ~ We consider the vectar(Rw) =(n. ,n_,ng) of general-

termsUg; (j=+,—,d) are the corresponding electron-ion ized densities

and electron-dipole interactions. These terms can be written N,

as the sum of potentials,; between an electron and a sol- P — R (i

vent particle with coordinétézij (j=+,—,d): n(R) Z OR=Ry).m(=+,=d)., @

1¢8 N and introduce X 3 matricesUg andHg, whose components
Uejz_J' de Uej(r(7)—Ry)). 2) are the respective short-range interaction potentials between
Blo [ solvent particles, and the total correlation functions caused
by these interactions:
The potentialslg; are not local in the general case. How- "
ever for our treatment we will use a pseudopotential approxi- . z _ (N-2}
mation[26,27] and decompose the electron-ion and electron- "oiMoil 1+ Hsij] = % E(N—-2)! ex — BUs;;]dR '
dipole potentials into short- and long-range paugi=Ues; (5)
+uj; . Since the typical size, of the electron density distri- _ _
bution exceeds greatly the typical size of changes in thdhen, using the Hubbard-Stratonovich transf¢a8,29, we
short-range components, we characterize the short-randéwrite the grand partition function as the path integral over
electron-anion and electron-dipole componengs(r<a;)  the scalar fields®,¥) induced by charges:
only by the parameters;:(j=—,d) and do not consider
dgtalls of electron-ion and el_ectron-dlpqle potentials at small = Eof D[V d]exd — BQ],
distances. The electron-cation potential, presents the
Coulomb attraction at large distances and differs from it at 1
distances less tham, . This parameter takes into account the _ . f 2
) : =T+ -n)—— —
influence of metallic cores. We suppose that the correspond- Q=T+l (no—n) 8 [V(¥—(ug)]°dR
ing long-range potentialg;;(r) are proportional to the Cou-
lomb interactionuy(r)=1/r. Using the three-component — B ny-
vector u;(rw) = (U4 ,u;_ ,Ujg) we can writeu,(r) =zuy(r),
wherez(rw)=(Z,=1-a%V?4m,Z_,Z4=dV) is the vec- , , , _ o
tor of g(en(;)rali(zea charge+s_ " ‘ ) wherel is 3X 3 diagonal unit matrix, whild is the three-
In the similar manner we decompose the interaction po°mpPonent umit -~ vector, (Ueg)
tential U.(R™) into the long-range pairwise interactiah ~ — (Uest)(Ues-),(Uess)),  No=(No+ 'Mo— ’ngd)’ the sym-
determined by charges of solvent particles and the shor20! - denotes a scalar productiom: b=Z2ja;(R)b;(R),
range repulsion componentUS:Uss(R{N})zUS(R{N}) while the symbol * corresponds to the convolution integra-
+U, (RN}, For our consideration the details of the short-1oN:
range potentiald¢(R) is not sufficient either, we take into 3
account only the fact that this potential is pairwise and re- *
) ; . a*b= 3(Rw)bj(R—R{,w—wq)dR;dw;. (7
stricted by a sizer;:(j=+,—,d). %: (Re)bi( ve-e)dRyder. (1)

N

1
|+Eno-f*HS *f, (6)

In relation (6) we also introduce the vectdrof generalized

lll. THEORY Mayer functions, whose components are written as

To evaluatg1) we should calculate the path integral over
the electron coordinate(7). A simple way for estimating
the path integral is its variational treatment by the Green’s
functionG(r,r')==;¢i(r") ¢i(r)exp(= BW) (whereW; and
¢; is the total energy and the wave functionidi electron

fi(Ro)=exd B(Zj W+ —(Uee)] -1 (8)

The free-energy function#b) has a simple meaning. The
second term in(6) corresponds to the contributions caused
. o . by changes in the averaged density of the electrolyte. The
statg. Using these variational estimates we have fol2f] third term is the electrostatic energy of the system, while the

that when the ground electron state is dominant, the funcfast term in(6) reflects the changes in the distribution of

tionals dependln_g on the electron path are replaced by th'saolvent particles, caused by the influence of an excess elec-
averaged potentials expressed as

tron, fluctuation potentiadb(Rw), and electric fieldV (R).

The short- and long-range contributions(B) are separated
_ _ 2 i in the explicit form, which allows us to obtain simple ana-

<U91(R)>_f Ue(r=R)go(ndr.2:(j=+.—.d), lytical estimates for the free-energy functional.
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The saddle point method can be used to estimate the path
integral over fields¥(R) and ®(R). It determines the Ve =2 f f ZiNgjUej(R—Ry, 0~ 1)
mean-field¥ ,(R) and fluctuation potentiab,(Rw) as ex- '
tremadQ/oW (V=" ,)=0 andoQ/dP(P=>,)=0. X gej(Rw)dR dw; . (14
The first extremum results in the Poisson—Boltzmann
(PB) equation: Thus, we should solve self-consistently the(@t(10), (12),

and (13). For the known self-consistent effective potential
Ve(r) we can calculate the first excited electron state, evalu-
AW = (Umg)) =472 f Zingjgejdw, (9  ate the transition energydW=|W,—W,| between the
. ground and the first excited electron state and estimate the

. . maximum absorption spectrum of an excess electron.
where g.j(Rw) are the corresponding electron-anion,

-cation, and -dipole correlation functions, determining the

probability for the relevant solvent particle to have an orien- IV. RESULTS
tation  and coordinatdk with respect to the center of elec- A. Asymptotic analysis
tron localization. These correlation functions are written in

the vector form as Note that the PB equation can easily be solved in the

Debye-Hickel (DH) limit. Using (9) we find the Fourier
transform of the mean field in the case of point ions:

Oe(Rw)=[1+ng- (f+1)*Hg]- (f+1). (10
_ _ _ [47—alk?*]$5(k)
Note that the electron-solvent correlation functions satisfy Ypu(k)= % , (15
certain conditions. Making the Fourier transform(6j, ex- k“+xp

panding the result in power series of the wave vektave

find various momentum conditions. The zero-momentumvhere kp=4mBXZny is a square of the inverse Debye
condition yields the local neutrality relation radius. Therefore, the relative field contribution into the free

energy of an excess electron should be proportional to the
parameter (.kp) 2. The typical mean electron radiug
1=47, f fzjnojgej(Rw)dew. (1))  =(r?)"2 approximates~2—-3A [1]. Thus, in the case of
! strong electrolytes there exists a small parametgk) ~*

) ) ) < 1. Taking into account this fact we rewrite the free energy
To complete mean-field evaluations, let us consider thgy excess electron in the form

contribution made by the fluctuation potential. Usii@) we
obtain from the extremum of the free energy QW @1, o) =Fo(bo)+Fou(¥m, P, bo)

+FN(‘Pm,(I)m,¢0), (16)

J 0e- Ngdw=ng-l=n=const, (12
which presents an expansion in series of the parameter

o _ (rexp) “%:Fo(¢p) is the field-independent parEpy is the
which implies that the averaged density of the electrolyte iy, contribution, andFy, is a residue determined by high
constant. This relation results in that the logarithmic termg qa, field-dependent terms.
o« JdRIn(fng- exd Bz¥ — B(Ues) 1dw/ B arises in the free- The zero-order contributioR, can be approximatei®4]
energy functional. A similar path-integral treatment of the 5o
fluctuation potential was considered in RE30] for binary

electrolytes. In the absence of dipolar interactions the fluc- 1

tuation potential is short-range, since according (1®) FO(¢O)~T+J J’ a2+ S(lry—r)— ﬁ
¢>(R—>oo)o<BEZi2n0i\If2. Hence the account of the potential =t

yields small corrections to the free-energy functional, and ) ) 4mp

weakly affects the electron density distribution. However, for X o(ry)dryep(rydr + 3p e (17)

point dipoles this term provides long-range orientation cor-
relations and the potential shoulq be carefully treated for the; depends only on two dimensionless parameters
correct account of these correlat|ons: =a lre andF=pB‘1r‘e‘. The first parameter takes into ac-
TDe upper boupd of6) can be qbtalned by .the eXtremum o, nt the influence of metallic cores, while the second one
dIn Z/9¢=0 leading to the Schrtinger equation corresponds to th&-center formation. The zero-order con-
tribution (17) has been investigated by us for the case when
_ é+Vef(r)—Wo bo(r)=0, (13) a;=0 a_nszO [24]., .and <_':1t finitg values od andI" cor-
2 responding to conditions in various molten sdi&§]. We
have found that properties of an excess electron are mainly
whereV¢(r) is the effective potential for an excess electron.determined by the Coulomb interactions resulting in the po-
Using the expression for the electron-solvent correlatiodaron formation. However, the short-range contributions
functions we rewrite the effective potential as caused by th&-center formation and the ion-core effect lead
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to a remarkable variance of the equilibrium electron charac- TABLE I. The mean radii and the electron energies for the
teristics. The calculated energy of a solvated electron agreegound and the first excited polaron state calculated by various ap-
with the data found by path-integral simulatigiist], while ~ proximations of¥, and by the COLSYS method.

the calculated transition energyW=|Wy,—Wj,| is in good

agreement with the experimental d&8i—33 on the maxi- Method of W —W,
mum of the absorption spectrum of an electron solvated in  Solution ro (&) 1 (A) (eVv) (eV)
alkali-halide melts. The characteristics of an excess eIectrorq,m:\I,DH 2.824 3888 3.185 1.385
gi’i”jﬂd";?i‘%rgg‘ri;f’emcfz)enrgitt‘gﬁs and concentration, SiNC§ . asin(r20), A=0  2.688  3.817 3.299 1342
. . o A sin(mr/2 2.504 3.724 3.466 1.466
The above analysis can be improved by the account og:mmAsinE:r/ZZ; o=0 2459 3694 3500 146
high-order terms i16). Using (15) to estimate this contri- COLSYS 2318 3.62

bution, i.e., Fy=(F\)pn, Wwe immediately obtain the ap-
proximated expression for electron-ion correlation functions

which will be considered elsewhere. Leaving aside this ques-

e+ (1) ~exd BV pu(r)], tion, we consider here only the concentration range at which
_ 2 .2 (18) dipoles do not produce any structural changes. In this case
ge(r)~exd —B(@aZ ¢o(r) +Wpu(r))]. their influence can be estimated by the perturbation theory.

- . Expanding in relatior{9) the term proportional to concentra-
The temperature dependence of solvent density is an origif_ " of dipoles into a power series (R) we have
of the similar dependence of the correlation functions. This b P m

results in a linear correlation between the maximum of the 2.2
Wonu(k)=Tpu(k,ngg=0)[1—3yk/«5], 20
absorption spectrum and the thermal expansion coefficient, oH(k) oH(KiNoa=0){ Ykl o] 20

which was experimentally found in Reff33]. Using these  \yherey=478ny,d2/9. Therefore the presence of dipoles
correlation functions we can also calculate the coordinatioRegyits in an additional screening of polaron. According to

numbers of anions and cations: (20), the increase in the concentration of dipoles decreases
e the mean field, and hence the energy and the mean radius of
N :4Wn0if S M ges (N)r2dr. (19)  the excess electron also decrease, the latter leads to enhanced
0 transition energyAW in the case under consideration.

Finally we investigate the effect of asymmetry of electro-
Under conditions typical for molten KCI we obtaiN, |yte, ie., Z,+Z_#0. Introducing the asymmetry factor
~3.5. dZ=|z_ +Z_|l|Z_|, we find that the change in the inverse

Another important peculiarity of18) is the explicit de-  pebye radius is proportional to this factor, i.ec3o(1
pendence of the electron-cation correlation function on the, 4z)2. Hence, the increase in the asymmetry of the electro-
tion on a cation decreases as rises. Under certain condi- the electron characteristics tend to the limiting values deter-
tions ge (0) becomes less than unity, as a result of whichmined by the zero-order contribution.
results an atomiclike state transforms into theenter-like
state of excess electron. Such transition is numerically found
in Ref.[14] by path integral simulations.

As indicated above, dipolar interactions lead to long- To Vverify our asymptotic analysis we have investigated
range orientation correlations. This can result in the formanumerically free-energy function&6) and the Schrdinger
tion of various localized electron states. One of them is theequation(13) together with the PB equatio(®). Both the
electron surrounded by an oscillating ion atmosphere. Andifferential equations were solved self-consistently using the
other formation arises when the electron is embedded into &OLSYS packagg35]. Table | and Fig. 1 present the results
cluster of oriented dipoles. The coexistence of the states arf@und under the conditiong=281, p=2.27x10 3, a%
their structural transitions is a very interesting problem,=10, anda® =32, ngy=0 (all of the parameters are in

B. Numerical calculations

~

0.07 | *

L olr)

.
~

FIG. 1. Distance dependence of the electron
wave functiong(r) for the ground state in mol-
ten NaCl calculated in the DH limitl), by varia-
tional estimate42), and by the COLSYS proce-
dure(3); all the values are in atomic units.

—1

—3

4 8 12 16 19
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atomic unit3. They show that the polaron state is strongly
localized under these conditions.

The free-energy functional was also evaluated by simple
variational estimates. We used trial hydrogenlike functions
for electron wave functions of the ground and the first excite
states:

0.04 @

-0.04

-0.08

o3
do(r)= \/ﬁ(l‘f’ ar)exp(—ar),:: ¢pq(r)

-0.12

5

\ /ﬂr cos® exp(— a;r), FIG. 2. Changes in the absolute value of the ground electron

™ energy| SW,| (solid lineg, and the transition energyAW (dashed

lines) versus the square of anion-cqe and cation-coréb) param-

whereqa; (i=0,1) are varying parametensand® are the eters under the condition®=294, p=2.37X10 3,ny=0, while
absolute value and the angle of the radius vector, respee, =3.01(a), anda_=4.18(b). All the values are in atomic units.
tively. Such a choice of trial functions provides correct
asymptotic behavior of electron wave functionsrat0.
Taking into account relatiofil5), we approximate the mean
field as

(21)

cies of the electron energW, and the transition energy
AW=|W,—W;| on the parametea, . These dependencies
are close to those obtained in RE?5]. As a. increases, the

energyW, decreases, whila W=|W,—W,| increases in a

similar manner.

We have applied our method to calculate the characteris-
tics of polaron states in molten salts. The data on
whereA and o are varying parameters. We also consideredemperature-dependent densities of the melts were taken
two limiting cases(22): A=0, which corresponds to the from Ref.[36]. For ion radii we used values obtained by
zero-order contributiol7) and the case-=0, while A/o is Abramo et al. [37]. The cation-core parametar, was ex-
finite, which ignores the oscillations of ionic atmospheretracted from the data obtained by pseudopotential calcula-
around the polaron. Thus considering the free-energy fundions for electron—metal interactions in liquid metao].

AmAsin(wr[20) p3(ar)

\Pm(r): 2
Kpl

(22

tional F(A,a,0), we calculated its extrema, fourgl.(r),
then calculated/.¢(r), and evaluated®V,. The electron en-
ergies Wy,W;) and the mean electron radius.) found

The cation parameter was calculated af$=27-rf[uq(r)
+Ug.(r)]r?dr, whereu, (r) is the electron-cation poten-
tial found in Ref.[26]. For the anion-core parameter we used

under the same conditions are listed in Table I. As is seen, ai2 =19 a.u. Table Il lists the calculated transition energies
the approximations yield similar values, which are close toand the mean radii as well as their experimental values and
the data obtained by numerical integration of differentialthe values obtained by the mean spherical approximation
equations. The difference W, found by the variational (MSA) [38]. As is seen our calculations are in good agree-
estimate and obtained by the COLSYS treatment is less thament with the MSA theory as well as with the experimental
3%. Figure 1 plots the comparison of the electron wave funcedata. However we have obtained more localized electron
tions for the ground state obtained by variational estimates atates than those calculated in RE&8]. The difference be-
A=0 and 0=0, and the data obtained by the COLSYS tween our data and experimental values is less than 5%. The
method. The data obtained in various ways are a good agreextraordinary situation is only for LiCl. In this case the elec-
ment. tron is mainly localized on cation, the electron state is
The choice of the varying parameierweakly affects the weakly affected by surrounding ion atmosphere and strongly
data obtained except the case when the electron forms a hgepends on small changes an and o. The experimental
drogenlike state strongly localized on cati¢see below.  situation is not clear for this case too. A broad absorption
Taking into account this fact, we performed the subsequerttand was observed in Rdf39]. We suppose that the po-
analysis by variational estimates supposingo be equal to laronlike state is metastable in this case and the electron
the mean ion distance. To reveal the influence of short-rangfrms a hydrogenlike state on a cation.
interactions, we calculated the dependencies/df,W;) on We have also studied the effect of temperature on the
a_ . This parameter characterizing the influence of an aniorlectron state. The calculations confirmed our asymptotic
core weakly affects the enerdfy, (Fig. 2). The dependence analysis. According to our calculations, there is a direct cor-
of the energy on this parameter is mainly determined byelation between the temperature dependencies of the elec-
changes in the fraction of the electron dendity—q(r tron mean radius and the energy. They are caused by the
<rg)], localized inside the electron cavityWyxpa [1  same effect, i.e., temperature dependence of the electrolyte
—q(r<rg)]. However the transition energgAW=|W,  density. In the case of NaCl our numerical estimates yield
—W;| depends ora_ stronger due to the fact that the first JAW/9T=—1x10"* eV/K, while the experimental value
excited state is more extended, and the fraction of electrois much higher 9 IN(Wy.)/dT=—7.1x10"% eV/K [40].
density inside the cavity is higher than that for the groundThe difference between our results and the experimental data
state. For comparison we also depict in Fig. 2 the dependemnay be explained by the fact that we used transition energy
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TABLE II. Calculated and experimental values of the transition enexgy(eV) and the mean radius
r. (A) for the polaron in various molten salts.

LiCl NaCl KCI RbCI CsCl
Theory

This AW 2.36 1.666 1.219 1.105 0.997
work le 2.066 2.579 3.077 3.241 3.414
[38] AW 2.22 1.69 1.33 1.22 1.06

le 3.24 3.31 3.46 351 3.70

Experiment
AW 2.26[39] 1.68[32] 1.29[32],1.33[41] 1.18[41] 1.08[32],1.01[33]
le 3.5+0.4[34]

AW=|W,—W,| instead ofW,,,,, but the latter should in- ceeds the Debye radius. This great difference in scales of

clude the contribution related to the reorganization of thehteractions for quantum and classical systems allows us to

medium, which determines temperature dependence of therovide an asymptotic analysis of the free-energy functional
absorption maximum. for the localized electrons and to calculate various electron

We have also investigate the influences of concentratiogharacteristics. Comparison our results with the experimental
of dipoles and the asymmetry of charges on the polaron chadata and numerical simulations shows that these estimates
acteristics. Figure 3 presents the dependencies of relativare very accurate.
changes inW,, AW, andr, on c=ngyy/ny obtained by our We have considered only the case when the influence of
calculations, while Fig. 4 shows the dependencies of thelipoles on the electron state is weak and can be treated by
same values on the asymmetry faada. All the data are in  perturbation methods. The situation in liquids with dominant
good agreement with our asymptotic analysis. Note also thalipolar interactions is more difficult due to long-range orien-
for high values oflZ, the situation is the same as in the casetation correlations. The detailed mean-field treatment of an
of LiCl. The polaronlike state is metastable, since there is &|ectron solvated in dipolar liquids is in progress.
hydrogenlike electron state localized on a highly charged Tpe application of the method goes beyond the single-
cation. electron problem. Recently we have used the method com-

bined with the density functional theof$2] to evaluate bi-
C. Concluding remarks polaron states in ionic liquidd43]. For multielectron

Combining quantum-mechanical and statistical ap-Problem the approach can be combined with quantum-
proaches for evaluating grand_partition function of a mixedchemical calculations. Hirata and his colleagues have applied
quantum-classical system, we have developed a method fér similar method to calculate solvent effects on triiodide
treating localized electron states in ionic liquids. This[44]. They usedab initio calculations to evaluate the elec-
method reduces the problem to self-consistent calculation dfonic structure and RISMreference interaction site moglel
the Schrdinger and the PB equations. Due to high concenequations to treat the solvent structure.
tration of charged particles, which is typical for strong elec-
trolytes, the size of electron density distribution greatly ex-

1.01

1.01 [

1.00
0.99

0.99

0 oloc] a6 o

0 1 2 3 4 5 8

FIG. 4. Relative changes in the mean radifrs/r. (dotted

FIG. 3. Relative changes in the mean radiérs./r, (dotted line), the energyéW,/W, (dashed ling of the electron ground
line), the ground electron energyW, /W, (dashed ling and the state, and the transition enerddAW/AW (solid line) versus the
transition energyb)AW/AW (solid line) caused by variation of the dipole concentration c (a2=10, B=281, p
asymmetry parametetZ. The unit values correspond ttZ= . =227x107%, a%=10).
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We have restricted ourselves only to localized electrorrather general and can be applied to a large number of prob-
states. However, a similar RISM-polaron approach was alstems dealing with electron states in solutions.
used by Chandler and Hsu for extended electron states in
inert gaseqg17]. Recently Leung and Csajka have applied ACKNOWLEDGMENTS
mean-field evaluations to reveal phase transitions between We would like to thank E. E. Shnol and D. Tikhonov for
localized and delocalized electron states in metal-ammonitwitful discussions, and W. Freyland and F. Hirata for pre-
solutions[45]. Thus, we think the developed approach issentation of their preprints.
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