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Mean-field treatment of polarons in strong electrolytes

G. N. Chuev,* and V. V. Sychyov, and O. Yu. Sokolova
Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russ

~Received 15 September 2000; published 24 May 2001!

Using variational estimates for the grand partition function, we have developed a microscopic theory of an
excess electron in an ionic liquid at high ion concentrations. We have derived the free-energy functional for the
electron and have calculated electron energies for the ground and the first excited states as well as electron-ion
correlation functions versus thermodynamic parameters of liquid and parameters of electron-ion potentials. We
have found that the energetic characteristics of solvated electron are mainly determined by the Coulomb
interaction which gives birth to polaronlike states, while ion cores have a pronounced quantitative effect on
these characteristics. The local solvent structure around the excess electron is determined by the mean field
induced by ions. Using the method developed we have calculated polaron characteristics in molten salts, such
as the maximum of the absorption spectrum and its variations caused by changes in temperature, density, and
composition of the electrolyte. The data obtained are in agreement with experiments and computer simulations.
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I. INTRODUCTION

Excess electrons in ionic liquids have been the subjec
considerable studies@1–6#. Interest in such systems is caus
by the fact that they exhibit a wide variety of electric a
magnetic properties due to dramatic competition betw
long-range Coulomb attractions and short-range repulsion
fects. Metal-ammonia solutions as well as molten salts
real objects where striking phenomena such as nonm
metal transitions, formation of bipolarons are observ
@2–4,7#. Excess electrons in such liquids provide a sim
example of mixed quantum and classical systems, which
hibit a large number of various effects and are convenie
studied by quantum statistical methods. By now extens
evidence has been accumulated on structural and therm
namic properties of these liquids@8#.

Path integral simulations have provided the basis for
study of excess electrons in such systems@9–14#. According
to the data of these simulations, an excess electron form
localized polaronlike state in the solutions at low concen
tion of metals. But the local structure and the behavior of
polaron state differ significantly from those of similar form
tions in solids@15#.

Another way to treat excess electrons in liquids is ba
on integral equations~IE! @16–23#. The IE provide a micro-
scopic description of liquids as well as an accurate acco
of peculiarities of electron-solvent interactions. The imp
mentation of these methods has been facilitated by spe
numerical algorithms and powerful computers.

Recently we have developed a semianalytical theory o
electron dissolved in molten salts@24,25#, which reduces the
problem to an evaluation of a mean field induced by char
and a self-consistent calculation of the electron density
tribution. We have calculated equilibrium energetic prop
ties and evaluated the absorption spectrum of the ex
electron for a wide range of alkali halide melts in the ca
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when the mean field is negligible. Here we extend our
proach to strong electrolytes and investigate polarons in
uids consisting of ions and dipoles. The influence of chan
in temperature, density or composition of electrolyte on
polaron characteristics will also be studied.

The paper is organized as follows. In Sec. II starting fro
the grand partition function we state the problem and
scribe the system under consideration. In Sec. III we
variational estimates of the electron path integral and fi
transformation to evaluate the grand partition function of
system and derive the free-energy functional of the electr
We will derive analytical relations for polaron characteristi
with the use of an asymptotic analysis~Sec. IV A!. Results of
our numerical calculations and their application to localiz
electron states in molten salts are presented in Sec. IV B,
discussed in Sec. IV C.

II. DESCRIPTION OF THE SYSTEM

Let us consider an ionic liquid with excess electrons d
solved there. We suppose the number of the electrons t
small so that we can ignore electron-electron interactions
restrict ourselves to a single-electron problem. The liquid
assumed to consist of ions with chargesZ1 andZ2 , respec-
tively, and dipolar particles with dipole momentumd. In the
case under consideration the averaged density of dipolesn0d
is supposed to be considerably smaller than the corresp
ing densities of anionsn02 and cationsn01 .

In the statistical treatment an ensemble of classical p
ticles interacting with an excess electron is described by
grand partition functionJ, which can be written as the func
tional integral depending on the solvent configuration a
the electron pathr (t):

J5 (
N>0

` za
N

N! E D@r ~t!#E dR$N% exp@2b~Uss1T1Ue1

1Ue21Ued!#, ~1!

where we use the system of units for which\5m5e51,b
stands for the inverse temperature, andza stands for the ac-
ic
©2001 The American Physical Society04-1
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tivity of solvent particles, assumed to be the same for all
solvent particles. Coordinates of anions$R2%, cations$R1%,
and dipoles$Rd% as well as dipole orientations~Euler angles!
$vd% determine a configurationR$N% of solvent particles.

The first termUss(R
$N%) in ~1! is the interaction potentia

between solvent particles, the second termT
5*0

b ṙ 2(t)dt/2b is the kinetic energy of the electron, and th
terms Ue j ( j 51,2,d) are the corresponding electron-io
and electron-dipole interactions. These terms can be wri
as the sum of potentialsue j between an electron and a so
vent particle with coordinateRi j :( j 51,2,d):

Ue j5
1

bE0

b

dt(
i

Nj

ue j~r ~t!2Ri j !. ~2!

The potentialsue j are not local in the general case. How
ever for our treatment we will use a pseudopotential appro
mation@26,27# and decompose the electron-ion and electr
dipole potentials into short- and long-range parts:ue j5ues j
1ul j . Since the typical sizer e of the electron density distri
bution exceeds greatly the typical size of changes in
short-range components, we characterize the short-ra
electron-anion and electron-dipole componentsues j(r ,aj )
only by the parametersaj :( j 52,d) and do not conside
details of electron-ion and electron-dipole potentials at sm
distances. The electron-cation potentialue1 presents the
Coulomb attraction at large distances and differs from it
distances less thana1 .This parameter takes into account t
influence of metallic cores. We suppose that the correspo
ing long-range potentialsul j (r ) are proportional to the Cou
lomb interaction uq(r )[1/r . Using the three-componen
vectorul(rv)5(ul 1 ,ul 2 ,uld) we can writeul(r )5zuq(r ),
wherez(rv)5(Z1[12a1

2
“

2/4p,Z2 ,Zd[d“) is the vec-
tor of generalized charges.

In the similar manner we decompose the interaction
tentialUss(R

$N%) into the long-range pairwise interactionUl
determined by charges of solvent particles and the sh
range repulsion componentUs :Uss(R

$N%)5Us(R
$N%)

1Ul(R
$N%). For our consideration the details of the sho

range potentialUs(R) is not sufficient either, we take into
account only the fact that this potential is pairwise and
stricted by a sizes j :( j 51,2,d).

III. THEORY

To evaluate~1! we should calculate the path integral ov
the electron coordinater (t). A simple way for estimating
the path integral is its variational treatment by the Gree
functionG(r ,r 8)5( if i(r 8)f i(r )exp(2bWi) ~whereWi and
f i is the total energy and the wave function ofi th electron
state!. Using these variational estimates we have found@25#
that when the ground electron state is dominant, the fu
tionals depending on the electron path are replaced by
averaged potentials expressed as

^Ue j~R!&5E Ue j~r2R!f0
2~r !dr ,:::~ j 51,2,d!, ~3!
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where symbolŝ •••& denote averaging over the electro
density distributionf0

2(r ). Thus, we reduce the problem t
an evaluation of the grand partition function in an extern
field induced by an excess electron, which includes sh
and long-range components depending on the electron
sity distribution.

We consider the vectorn(Rv)5(n1 ,n2 ,nd) of general-
ized densities

nj~R!5(
i

Nj

d~R2Ri j !.:::~ j 51,2,d!., ~4!

and introduce 333 matricesUs andHs , whose components
are the respective short-range interaction potentials betw
solvent particles, and the total correlation functions cau
by these interactions:

n0in0 j@11Hsi j#5(
N

`
zN

J~N22!! E exp@2bUsi j#dR$N22%.

~5!

Then, using the Hubbard-Stratonovich transform@28,29#, we
rewrite the grand partition function as the path integral o
the scalar fields (F,C) induced by charges:

J5J0E D@CF#exp@2bQ#,

Q5T1F l* ~n02n!2
1

8pE @¹~C2^uq&!#2 dR

2b21n0•F I1
1

2!
n0•f* HsG* f, ~6!

where I is 333 diagonal unit matrix, whilel is the three-
component unit vector, ^ues&
5(^ues1&,^ues2&,^uesd&), n05(n01 ,n02 ,n0d), the sym-
bol • denotes a scalar production:a•b5( i j

3 ai(R)bj (R),
while the symbol * corresponds to the convolution integ
tion:

a* b[(
i j

3 E ai~Rv!bj~R2R1 ,v2v1!dR1 dv1 . ~7!

In relation ~6! we also introduce the vectorf of generalized
Mayer functions, whose components are written as

f j~Rv!5exp@b~ZjC1F2^ues j&!#21. ~8!

The free-energy functional~6! has a simple meaning. Th
second term in~6! corresponds to the contributions caus
by changes in the averaged density of the electrolyte.
third term is the electrostatic energy of the system, while
last term in ~6! reflects the changes in the distribution
solvent particles, caused by the influence of an excess e
tron, fluctuation potentialF(Rv), and electric fieldC(R).
The short- and long-range contributions in~6! are separated
in the explicit form, which allows us to obtain simple an
lytical estimates for the free-energy functional.
4-2
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MEAN-FIELD TREATMENT OF POLARONS IN STRONG . . . PHYSICAL REVIEW E63 061204
The saddle point method can be used to estimate the
integral over fieldsC(R) and F(R). It determines the
mean-fieldCm(R) and fluctuation potentialFm(Rv) as ex-
trema]Q/]C(C5Cm)50 and]Q/]F(F5Fm)50.

The first extremum results in the Poisson–Boltzma
~PB! equation:

D~Cm2^umq&!54p(
j
E Zjn0 jge j dv, ~9!

where ge j(Rv) are the corresponding electron-anio
-cation, and -dipole correlation functions, determining t
probability for the relevant solvent particle to have an orie
tationv and coordinateR with respect to the center of elec
tron localization. These correlation functions are written
the vector form as

ge~Rv!5@ I1n0•~ f1 l!* Hs#•~ f1 l!. ~10!

Note that the electron-solvent correlation functions sati
certain conditions. Making the Fourier transform of~9!, ex-
panding the result in power series of the wave vectork, we
find various momentum conditions. The zero-moment
condition yields the local neutrality relation

154p(
j
E E Zjn0 jge j~Rv!dR dv. ~11!

To complete mean-field evaluations, let us consider
contribution made by the fluctuation potential. Using~10! we
obtain from the extremum of the free energy

E ge•n0dv5n0• l5n5const, ~12!

which implies that the averaged density of the electrolyte
constant. This relation results in that the logarithmic te
}*dR ln(*n0•exp@bzC2b^ues j&#dv/b arises in the free-
energy functional. A similar path-integral treatment of t
fluctuation potential was considered in Ref.@30# for binary
electrolytes. In the absence of dipolar interactions the fl
tuation potential is short-range, since according to~12!
F(R→`)}b(Zi

2n0iC
2. Hence the account of the potenti

yields small corrections to the free-energy functional, a
weakly affects the electron density distribution. However,
point dipoles this term provides long-range orientation c
relations and the potential should be carefully treated for
correct account of these correlations.

The upper bound of~6! can be obtained by the extremu
] ln J/]f050 leading to the Schro¨dinger equation

F2
D

2
1Ve f~r !2W0Gf0~r !50, ~13!

whereVe f(r ) is the effective potential for an excess electro
Using the expression for the electron-solvent correlat
functions we rewrite the effective potential as
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Ve f~r !5(
j
E E Zjn0 jue j~R2R1 ,v2v1!

3ge j~Rv!dR1dv1 . ~14!

Thus, we should solve self-consistently the set~9!, ~10!, ~12!,
and ~13!. For the known self-consistent effective potent
Ve f(r ) we can calculate the first excited electron state, eva
ate the transition energyDW5uW02W1u between the
ground and the first excited electron state and estimate
maximum absorption spectrum of an excess electron.

IV. RESULTS

A. Asymptotic analysis

Note that the PB equation can easily be solved in
Debye-Hűckel ~DH! limit. Using ~9! we find the Fourier
transform of the mean field in the case of point ions:

CDH~k!5
@4p2a1

2 k2#f0
2~k!

k21kD
2

, ~15!

where kD
2 54pb(Zi

2n0i is a square of the inverse Deby
radius. Therefore, the relative field contribution into the fr
energy of an excess electron should be proportional to
parameter (r ekD)22. The typical mean electron radiusr e
5^r 2&1/2 approximates'2 – 3Å @1#. Thus, in the case o
strong electrolytes there exists a small parameter (r ekD)21

!1. Taking into account this fact we rewrite the free ener
of excess electron in the form

Q~Cm,Fm ,f0!5F0~f0!1FDH~Cm ,Fm ,f0!

1FN~Cm ,Fm ,f0!, ~16!

which presents an expansion in series of the param
(r ekD)22:F0(f0) is the field-independent part,FDH is the
DH contribution, andFN is a residue determined by hig
order field-dependent terms.

The zero-order contributionF0 can be approximated@24#
as

F0~f0!'T1E E Fa1
2 d~ ur12r u!2

1

2ur12r uG
3f0

2~r1!dr1f0
2~r !dr1

4pr

3b
r e

3 . ~17!

It depends only on two dimensionless parametersa1
!

5a1 /r e andG5rb21r e
4 . The first parameter takes into ac

count the influence of metallic cores, while the second o
corresponds to theF-center formation. The zero-order con
tribution ~17! has been investigated by us for the case wh
a1

! 50 andG50 @24#, and at finite values ofaD
! andG cor-

responding to conditions in various molten salts@25#. We
have found that properties of an excess electron are ma
determined by the Coulomb interactions resulting in the
laron formation. However, the short-range contributio
caused by theF-center formation and the ion-core effect lea
4-3
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G. N. CHUEV, V. V. SYCHYOV, AND O. YU. SOKOLOVA PHYSICAL REVIEW E63 061204
to a remarkable variance of the equilibrium electron char
teristics. The calculated energy of a solvated electron ag
with the data found by path-integral simulations@14#, while
the calculated transition energyDW5uW02W1u is in good
agreement with the experimental data@31–33# on the maxi-
mum of the absorption spectrum of an electron solvated
alkali-halide melts. The characteristics of an excess elec
depend weakly on temperature and concentration, s
G!1 under appropriate conditions.

The above analysis can be improved by the accoun
high-order terms in~16!. Using ~15! to estimate this contri-
bution, i.e., FN.^FN&DH , we immediately obtain the ap
proximated expression for electron-ion correlation functio

ge1~r !'exp@bCDH~r !#,
~18!

ge2~r !'exp@2b„a2
2 f0

2~r !1CDH~r !…#.

The temperature dependence of solvent density is an o
of the similar dependence of the correlation functions. T
results in a linear correlation between the maximum of
absorption spectrum and the thermal expansion coeffici
which was experimentally found in Ref.@33#. Using these
correlation functions we can also calculate the coordina
numbers of anions and cations:

Ne654pn06E
0

r e1r min
ge6~r !r 2 dr. ~19!

Under conditions typical for molten KCl we obtainN1

'3.5.
Another important peculiarity of~18! is the explicit de-

pendence of the electron-cation correlation function on
parametera1 . According to~15! and~18!, electron localiza-
tion on a cation decreases asa1 rises. Under certain condi
tions ge1(0) becomes less than unity, as a result of wh
results an atomiclike state transforms into theF-center-like
state of excess electron. Such transition is numerically fo
in Ref. @14# by path integral simulations.

As indicated above, dipolar interactions lead to lon
range orientation correlations. This can result in the form
tion of various localized electron states. One of them is
electron surrounded by an oscillating ion atmosphere.
other formation arises when the electron is embedded in
cluster of oriented dipoles. The coexistence of the states
their structural transitions is a very interesting proble
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which will be considered elsewhere. Leaving aside this qu
tion, we consider here only the concentration range at wh
dipoles do not produce any structural changes. In this c
their influence can be estimated by the perturbation the
Expanding in relation~9! the term proportional to concentra
tion of dipoles into a power series inCm(R) we have

CDH~k!5CDH~k,n0d50!@123yk2/kD
2 #, ~20!

where y54pbn0dd
2/9. Therefore the presence of dipole

results in an additional screening of polaron. According
~20!, the increase in the concentration of dipoles decrea
the mean field, and hence the energy and the mean radiu
the excess electron also decrease, the latter leads to enha
transition energyDW in the case under consideration.

Finally we investigate the effect of asymmetry of electr
lyte, i.e., Z11Z25” 0. Introducing the asymmetry facto
dZ5uZ11Z2u/uZ2u, we find that the change in the invers
Debye radius is proportional to this factor, i.e.,kD

2 }(1
1dZ)2. Hence, the increase in the asymmetry of the elec
lyte composition decreases the parameter (r ekD)21 and all
the electron characteristics tend to the limiting values de
mined by the zero-order contribution.

B. Numerical calculations

To verify our asymptotic analysis we have investigat
numerically free-energy functional~6! and the Schro¨dinger
equation~13! together with the PB equation~9!. Both the
differential equations were solved self-consistently using
COLSYS package@35#. Table I and Fig. 1 present the resul
found under the conditionsb5281, r52.2731023, a1

2

510, anda2
2 532, n0d50 ~all of the parameters are in

TABLE I. The mean radii and the electron energies for t
ground and the first excited polaron state calculated by various
proximations ofCm and by the COLSYS method.

Method of
solution r 0 (Å) r 1 (Å)

2W0

(eV)
2W1

(eV)

Cm5CDH 2.824 3.888 3.185 1.385
Cm}A sin(pr/2s), A50 2.688 3.817 3.299 1.342
Cm}A sin(pr/2s) 2.504 3.724 3.466 1.466
Cm}A sin(pr/2s), s50 2.459 3.694 3.500 1.46
COLSYS 2.318 3.62
on

-

FIG. 1. Distance dependence of the electr
wave functionf0(r ) for the ground state in mol-
ten NaCl calculated in the DH limit~1!, by varia-
tional estimates~2!, and by the COLSYS proce
dure ~3!; all the values are in atomic units.
4-4
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MEAN-FIELD TREATMENT OF POLARONS IN STRONG . . . PHYSICAL REVIEW E63 061204
atomic units!. They show that the polaron state is strong
localized under these conditions.

The free-energy functional was also evaluated by sim
variational estimates. We used trial hydrogenlike functio
for electron wave functions of the ground and the first exc
states:

f0~r !5Aa3

7p
~11ar !exp~2ar !,:::f1~r !

5Aa1
5

p
r cosQ exp~2a1r !, ~21!

wherea i ( i 50,1) are varying parameters,r andQ are the
absolute value and the angle of the radius vector, res
tively. Such a choice of trial functions provides corre
asymptotic behavior of electron wave functions atr→0.
Taking into account relation~15!, we approximate the mea
field as

Cm~r !5
4pA sin~pr /2s!f0

2~ar !

kD
2 r

, ~22!

whereA ands are varying parameters. We also conside
two limiting cases~22!: A50, which corresponds to th
zero-order contribution~17! and the cases50, whileA/s is
finite, which ignores the oscillations of ionic atmosphe
around the polaron. Thus considering the free-energy fu
tional F(A,a,s), we calculated its extrema, foundge6(r ),
then calculatedVe f(r ), and evaluatedW1. The electron en-
ergies (W0 ,W1) and the mean electron radius (r e) found
under the same conditions are listed in Table I. As is seen
the approximations yield similar values, which are close
the data obtained by numerical integration of different
equations. The difference inW0 found by the variational
estimate and obtained by the COLSYS treatment is less
3%. Figure 1 plots the comparison of the electron wave fu
tions for the ground state obtained by variational estimate
A50 and s50, and the data obtained by the COLSY
method. The data obtained in various ways are a good ag
ment.

The choice of the varying parameters weakly affects the
data obtained except the case when the electron forms a
drogenlike state strongly localized on cation~see below!.
Taking into account this fact, we performed the subsequ
analysis by variational estimates supposings to be equal to
the mean ion distance. To reveal the influence of short-ra
interactions, we calculated the dependencies of (W0 ,W1) on
a2 . This parameter characterizing the influence of an an
core weakly affects the energyW0 ~Fig. 2!. The dependence
of the energy on this parameter is mainly determined
changes in the fraction of the electron density@12q(r
,r e)#, localized inside the electron cavity:W0}ra2@1
2q(r ,r e)#. However the transition energyDW5uW0
2W1u depends ona2 stronger due to the fact that the fir
excited state is more extended, and the fraction of elec
density inside the cavity is higher than that for the grou
state. For comparison we also depict in Fig. 2 the depend
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cies of the electron energyW0 and the transition energy
DW5uW02W1u on the parametera1 . These dependencie
are close to those obtained in Ref.@25#. As a1 increases, the
energyW0 decreases, whileDW5uW02W1u increases in a
similar manner.

We have applied our method to calculate the characte
tics of polaron states in molten salts. The data
temperature-dependent densities of the melts were ta
from Ref. @36#. For ion radii we used values obtained b
Abramo et al. @37#. The cation-core parametera1 was ex-
tracted from the data obtained by pseudopotential calc
tions for electron–metal interactions in liquid metals@26#.
The cation parameter was calculated asa1

2 52p*@uq(r )
1ue1(r )#r 2 dr, whereue1(r ) is the electron-cation poten
tial found in Ref.@26#. For the anion-core parameter we us
a2

2 519 a.u. Table II lists the calculated transition energ
and the mean radii as well as their experimental values
the values obtained by the mean spherical approxima
~MSA! @38#. As is seen our calculations are in good agre
ment with the MSA theory as well as with the experimen
data. However we have obtained more localized elect
states than those calculated in Ref.@38#. The difference be-
tween our data and experimental values is less than 5%.
extraordinary situation is only for LiCl. In this case the ele
tron is mainly localized on cation, the electron state
weakly affected by surrounding ion atmosphere and stron
depends on small changes ina1 and s. The experimental
situation is not clear for this case too. A broad absorpt
band was observed in Ref.@39#. We suppose that the po
laronlike state is metastable in this case and the elec
forms a hydrogenlike state on a cation.

We have also studied the effect of temperature on
electron state. The calculations confirmed our asympt
analysis. According to our calculations, there is a direct c
relation between the temperature dependencies of the e
tron mean radius and the energy. They are caused by
same effect, i.e., temperature dependence of the electro
density. In the case of NaCl our numerical estimates yi
]DW/]T.2131024 eV/K, while the experimental value
is much higher] ln(Wmax)/]T.27.131024 eV/K @40#.
The difference between our results and the experimental
may be explained by the fact that we used transition ene

FIG. 2. Changes in the absolute value of the ground elec
energyudW0u ~solid lines!, and the transition energydDW ~dashed
lines! versus the square of anion-core~a! and cation-core~b! param-
eters under the conditionsb5294, r52.3731023,n0d50, while
a153.01 ~a!, anda254.18 ~b!. All the values are in atomic units
4-5
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TABLE II. Calculated and experimental values of the transition energyDW(eV) and the mean radius
r e (Å) for the polaron in various molten salts.

LiCl NaCl KCl RbCl CsCl
Theory

This DW 2.36 1.666 1.219 1.105 0.997
work r e 2.066 2.579 3.077 3.241 3.414
@38# DW 2.22 1.69 1.33 1.22 1.06

r e 3.24 3.31 3.46 3.51 3.70

Experiment
DW 2.26 @39# 1.68 @32# 1.29 @32#,1.33 @41# 1.18 @41# 1.08 @32#,1.01 @33#

r e 3.560.4 @34#
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DW5uW02W1u instead ofWmax, but the latter should in-
clude the contribution related to the reorganization of
medium, which determines temperature dependence of
absorption maximum.

We have also investigate the influences of concentra
of dipoles and the asymmetry of charges on the polaron c
acteristics. Figure 3 presents the dependencies of rela
changes inW0 , DW, andr e on c5n0d /n0 obtained by our
calculations, while Fig. 4 shows the dependencies of
same values on the asymmetry factordZ. All the data are in
good agreement with our asymptotic analysis. Note also
for high values ofdZ, the situation is the same as in the ca
of LiCl. The polaronlike state is metastable, since there
hydrogenlike electron state localized on a highly charg
cation.

C. Concluding remarks

Combining quantum-mechanical and statistical a
proaches for evaluating grand-partition function of a mix
quantum-classical system, we have developed a method
treating localized electron states in ionic liquids. Th
method reduces the problem to self-consistent calculatio
the Schro¨dinger and the PB equations. Due to high conc
tration of charged particles, which is typical for strong ele
trolytes, the size of electron density distribution greatly e

FIG. 3. Relative changes in the mean radiusdr e /r e ~dotted
line!, the ground electron energydW0 /W0 ~dashed line!, and the
transition energydDW/DW ~solid line! caused by variation of the
asymmetry parameterdZ. The unit values correspond todZ5`.
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ceeds the Debye radius. This great difference in scale
interactions for quantum and classical systems allows u
provide an asymptotic analysis of the free-energy functio
for the localized electrons and to calculate various elect
characteristics. Comparison our results with the experime
data and numerical simulations shows that these estim
are very accurate.

We have considered only the case when the influence
dipoles on the electron state is weak and can be treate
perturbation methods. The situation in liquids with domina
dipolar interactions is more difficult due to long-range orie
tation correlations. The detailed mean-field treatment of
electron solvated in dipolar liquids is in progress.

The application of the method goes beyond the sing
electron problem. Recently we have used the method c
bined with the density functional theory@42# to evaluate bi-
polaron states in ionic liquids@43#. For multielectron
problem the approach can be combined with quantu
chemical calculations. Hirata and his colleagues have app
a similar method to calculate solvent effects on triiodi
@44#. They usedab initio calculations to evaluate the elec
tronic structure and RISM~reference interaction site mode!
equations to treat the solvent structure.

FIG. 4. Relative changes in the mean radiusdr e /r e ~dotted
line!, the energydW0 /W0 ~dashed line! of the electron ground
state, and the transition energydDW/DW ~solid line! versus the
dipole concentration c (a2

2 510, b5281, r
52.2731023, a1

2 510).
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We have restricted ourselves only to localized elect
states. However, a similar RISM-polaron approach was a
used by Chandler and Hsu for extended electron state
inert gases@17#. Recently Leung and Csajka have appli
mean-field evaluations to reveal phase transitions betw
localized and delocalized electron states in metal–amm
solutions @45#. Thus, we think the developed approach
06120
n
o
in

en
ia

rather general and can be applied to a large number of p
lems dealing with electron states in solutions.
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