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We analyze a multicomponent soliton model of systems with hydrogen bond
(hydrogen-containing ferroelectrics and biomembrane ionic channels), taking
into account the interaction of proton and ion subsystems or of proton and or-
dered subsystems. Based on the system simulation, experimental data on trigly-
cine sulfate and ionic channels of biological membranes are analyzed.
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1. Introduction

The proton transportal through hydrogen bond
chains plays a key role in dynamics of all known
hydrogen-containing systems, causing a number of
fine nonlinear and quantum effects especially im-
portant during phase (or conformational) transi-
tions. The hydrogen bond in various systems is
usually described by the proton potential energy
with two minima (double potential well). The bond
dynamics is controlled by proton transition be-
tween these minima under various conditions. In
complex systems, one should take into account the
explicit interaction of basic subsystems, which
leads necessarily to consideration of the multi-
component models [1-4]. Existence of the ordered
subsystem with a phase transition gives rise to the
two-component model describing the phase transi-
tion displacement in that subsystem under the im-
pact of the proton subsystem [5, 6].

In this paper we study analytically and numeri-
cally nonlinear multicomponent models of systems
with hydrogen bond, based on the two-component
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model earlier developed for biomolecular chains

and hydrogen-bound ferroelectrics [1—4, 61 1.

2. Interaction of proton and ion subsystems
in the two-component model

If one considers motion of the second “carry-
ing” subsystem of negative ions (hydroxyl groups
in water) or heavy molecular groups, the equation
(two-component model) [12] is introduced to de-
scribe these groups, taking into account the inter-
action between proton and ion subsystems. In this
case, the equation of an ion component is analo-
gous to that of the proton component motion, how-
ever, the former being as a rule easier (linear).
This allows its exact solution and then substitution
into the equation of the proton component. There-
fore, the solution to the nonlinear equation of pro-
ton subsystem is modified and the arising effects
are very important.

For example, the potential barrier height is var-
ied in the double proton well, which changes the
proton motion (tunneling) mode. That motion, fre-
quency, and soliton velocity are modulated by ion
sublattice vibrations. Furthermore, there exists also
the reverse impact of the proton sublattice on the
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ion one due to the interaction of the subsystems
[1,4, 12]. The proton subsystem Hamiltonian is
written as

i fa{ {2 Lol 2 Tt
(1

where m is the proton mass, v is the proton dis-
placement from the middle /, between two neigh-
boring frozen negative ions in the two-well anhar-
monic potential

|
V(u):lAuz =B
2 4

(4<0, B>0), (2)
@y 1s the characteristic frequency of proton—proton
vibrations and ¢, =lywo=1l/ty 1s the proton
(sound) velocity. In the continuous limit, one has
ly=colwy— 0.

The ion (oxygen) subsystem Hamiltonian is

given by
1 (epY | apY |
Hy=|dx| =M| — | + =MV +—MQ;
’ J’){z [arj 2 O[a\J 2 p}
(3)

where M is the mass of heavy ion groups, ) is the
frequency of an optical mode of ion sublattice vi-
brations, p is the relative displacement of
neighboring groups, vy = 1,€; is the characteristic
velocity in the ion sublattice, and €, is the charac-
teristic frequency of ion harmonic vibrations.

The Hamiltonian of interaction between the
proton and ion subsystems (see [11])

H"' "—“)(p(uz —ué) (4)

leads to the dquations of motion in the accompany-
ing coordinaﬁe §=X-Vl,

I—— o’u
cof os’

M(v? -VO)‘;/;

[(A+2Zp)u+BuJ 0, (5)

MQOp+)((t "'“o) 0. (6)
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Figure 1. Dependence of the proton displacement u

(kink) and the relative displacement p of oxygen ions
(bell) on the coordinate s at py = 0.01 (solid line and o)
and 0.25 (vand < ).

Set (5), (6) is readily solved in a specific case
when v = v, and one finds from (6) that

___X 2 2
p= MQS (u Uy ) (7)
Solution in this case is written as
0 = pysech? (cr*s) for the ion subsystem, (8)

a's
u =u, tanh (— for the proton subsystem, (9)

#)

where
g
Po = (10)
MO}
a*:l(’i ] , (11)
Co \ |1

|
Fedef2r0_gliz_ £ 20| an
MOy 2MQ, v,

These solutions at various parameters p, are plot-
ted in Fig. 1.
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Figure 2. Temperature dependence of the velocity in the absence of (a) and with (b) the proton subsystem excitation at
fields £ = 10° (m, 1), 10° (v, v), and 10* V.m™' (e, 0); closed and open symbols correspond to v; and V5.

3. Interaction between the proton
and ordered subsystems
in the two-component model

In this case, the proton subsystem Hamiltonian
remains as before, while tl e Hamiltonian of an-
other ordered subsystem with the order parameter
& takes on the form

ox
(13)
where F is the free energy density and v, is the
second sublattice unit cell volume. Introducing the

Hamiltonian of interaction between the proton and
ordered subsystems,

Hiy = Do(uz _“3)52 +Qyus,

2
H,=FVv, E)%ag%%ﬂgu%yg% 5(6_‘5) ]

(14)
one finds the nonlinear equation for parameter £ as
|

dé

- |

d*¢&
+ AV,
ds’ T T ds

_{[Mp(ul_ " )]gﬂgg-u ],!-55—1;‘2 i Qu} =0. (15)

20

Here I' = 1/4, is the Landa!u—Khalatnikov coeffi-
cient of the second subsystem without critical be-
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havior in temperature and a=a+a (T -T,)
=qy(T -T,), where o, a, >0, f<0 are coef-
ficients of the Landau—Ginzburg—Devonshire ther-
modynamic expansion, 7y and 7, are the phase
transition and Curie—Weiss temperatures, 6> 0 is a
factor at the gradient term, E; i; the external (elec-
tric in the case of polarization) field, and D = Dy/v,
and O = Qy/v, are constants of the interaction be-
tween the subsystems.

The equation of motion for the proton subsys-
tem in the field of external forces F'= ¢qE, (where ¢
is the effective proton charge and qu is the proton
subsystem polarization) takes on the analogous
form

2% 42
meg [1 —Z—;}%
0

_[(A+D§3)u+8u3—(qE, —Qf)}=0 (16)

+ AV, Z—:

in the accompanying variableI s=x—-vit (vi#w
in general). |

The analysis (see [1]) of set (15), (16) shows
that its solutions have the form of kinks of a more
complex form than (9), and the soliton motion of
protons and the phase boundary of the ordered
subsystem at velocities v; and v, are possible only
in fields lower than certain critical values E, < E,
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Figure 3. Temperature dependence of the kink halfwidth in the absence of (a) with (b) the proton subsystem excitation
at electric fields £ = 10° (solid line for A, and o for A,) and 10* V-m™" (v for A, and m for A;).

E, < E,. In a reduced form and for y= 0, set (15),
(16) transforms to

L5 S R©=0,

> 1
Z . (17)
F . «d¥
g E)=0,
dz* 2 dz (1)

where the polynomials

F)=-({-6)(¢-6)¢-5)

(18)
RY)=—(Y-1)(¥ -5)(Y-%).

are expressed in terms of their roots

4/ 1 ) 3\/5 *
= il e ,
oV = co{3 cos ( > E, H

T e -
gz,yzz——fgcos —3——§COS |£—7E1‘7J ! (19)

i
2 i adE ]
§3,y3=——\[_—3—cos —735+§cos '[——iE,L] :

The solutions have the form of kinks

¢(2)=¢, +(Cl _4‘2){]+5XP(iZZ’J} ;

2

]
Y(z)=Y, +(¥, -Yz){l +exp(iAiH ,

for velocities (see Fig. 2)
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and the halfwidth (see Fig. 3)
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4. Data discussion and conclusion

Solutions for a number of the model parameters
are numerically calculated on a basis of the formu-
las found earlier in [1-3] and with the same pa-
rameter values as in [1]. An analysis of variations
in the kink velocity and halfwidth in the phase
transition vicinity at microwave excitation of the
proton subsystem and in the absence of such exci-
tation (see Fig.2, where the temperature 7 is
measured from the transition point) shows the
phase transition temperature shift by 2-3°, which
conforms to the experimental data of [3] on trigly-
cine sulfate.

Thus, the basic results of this work are the
following:

(1) Differential equations are derived to de-
scribe nonlinear dynamics of soliton (kink) excita-
tions in the model of proton and ordered subsys-
tems interacting in hydrogen-containing systems
(biomembrane ionic channels and hydrogen-
containing ferroelectrics).

(11) Possible solutions to the set of differential
equations for nonlinear waves are studied in con-
tinual approximation and soliton solutions are
found in special cases.

(i11) A code is developed for numerical study of
the solutions found; calculations are performed for
various model parameters.

(1v) A number of numerical results are analyzed
and compared to the experimental data on trigly-
cine sulfate.

(v) The found numerical data confirm the
model validity and the possibility of its application
to more complex biomolecular systems (biomem-
brane ionic channels and DNA) using triglycine
sulfate as a model object.
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